

**REQUEST FOR LETTER OF MAP REVISION
NE CANON DRAINAGE BASIN (SUB-BASIN FROM NE)
ORCHARD AVENUE DETENTION BASIN
CANON CITY, COLORADO**

Prepared for:
The City of Canon City
612 Royal Gorge Blvd.
Canon City, CO 81215-1460

Prepared by:
Associated Design Professionals, Inc.
1861 Austin Bluffs Parkway, Suite 101
Colorado Springs, CO 80918

May 6, 1998
File: 970806

Associated Design Professionals, Inc.

May 6, 1998

Michael J. Baker Jr., Inc.
3601 Eisenhower Avenue, Suite 600
Alexandria, VA 22304

**RE: NE Canon Drainage Area (Sub-Basin from NE)
Letter of Map Revision – Orchard Avenue Detention Basin**

To Whom It May Concern:

Please find enclosed two (2) copies of the supporting documentation for the Request for Letter of Map Revision (LOMR) for the area between High Street and Central Avenue within the sub-basin from the NE. Also enclosed is a diskette with HEC-RAS input and output for the project area.

The LOMR submittal is divided into the following sections:

SECTION 1 – Application/Certification Forms
SECTION 2 – TR20 Run - Hydrologic Analysis
SECTION 3 – HEC-RAS Run – Pre Detention Conditions
SECTION 4 – HEC-RAS Run – As Built Conditions
SECTION 5 – As Built Profiles
Back Pocket – Revised Floodplain Maps
Attached plan set

The original FEMA floodplain delineation within this reach was approximate. Therefore, an evaluation of the existing FEMA floodplain was performed utilizing current topographic mapping. Since a regional detention facility was recently constructed by the City of Canon City and will be maintained by them, the FEMA floodplain delineation was modified to reflect the revised downstream flows.

The examination of current topography, combined with revised HEC-RAS runs for the 100-year storm, indicated that the 100-year floodplain is contained within the detention facility, and the defined natural channel.

Please contact me immediately if you have any questions, or need additional information.

Sincerely,

Michael A. Bartusek, P.E.
Principal

Enclosures
MAB/bae
970806_lt1.398

SECTION 1

Application/Certification Forms

PUBLIC BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 2.13 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing and reviewing the form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden, to: Information Collections Management, Federal Emergency Management Agency, 500 C Street, S.W., Washington, DC 20472; and to the Office of Management and Budget, Paperwork Reduction Project (3067-0148), Washington, DC 20503.

1. OVERVIEW

1. The basis for this revision request is (are): (check all that apply)

Physical change
 Existing
 Proposed
 Improved methodology
 Improved data
 Floodway revision
 Other _____

Explain _____

2. Flooding Source: NE CANON DRAINAGE AREA (SUB-BASIN FROM NE)

3. Project Name/Identifier: ORCHARD AVENUE LETTER OF MAP REVISION

4. FEMA zone designations affected: A, X

(example: A, AH, AO, A1-A30, A99, AE, V, V1-30, VE, B, C, D, X)

5. The NFIP map panel(s) affected for all impacted communities is (are):

Community No.	Community Name	County	State	Map No.	Panel No.	Effective Date
EX: 480301	Katy, City	Harris, Fort Bend	TX	480301	0005D	02/08/83
480287	Harris County	Harris	TX	48201C	0220G	09/28/90
<u>080067</u>	<u>CANON CITY</u>	<u>FREMONT</u>	<u>CO</u>	<u>080067</u>	<u>0335B</u>	<u>09/29/09</u>

6. The area of revision encompasses the following types of flooding, structures, and associated disciplines: (check all that apply)

Types of Flooding

Riverine
 Coastal
 Alluvial Fan
 Shallow Flooding (e.g. Zones AO and AH)
 Lakes

Affected by
wind/wave action

Yes
 No

Other(describe) _____

Structures

Channelization
 Levee/Floodwall
 Bridge/Culvert
 Dam
 Coastal
 Fill
 Pump Station
 None
 Channel Relocation
 Excavation
 Other(describe)

Disciplines*

Water Resources
 Hydrology
 Hydraulics
 Sediment Transport
 Interior Drainage
 Structural
 Geotechnical
 Land Surveying
 Other (describe)

* Attach completed "Certification by Registered Professional Engineer and/or Land Surveyor" Form for each discipline checked. (Form 2)

2. FLOODWAY INFORMATION

7. Does the affected flooding source have a floodway designated on the effective FIRM or FBFM? Yes No
 8. Does the revised floodway delineation differ from that shown on the effective FIRM or FBFM? Yes No

If yes, give reason: PREVIOUS FLOODWAY DELINEATION WAS APPROXIMATE

Attach copy of either a public notice distributed by the community stating the community's intent to revise the floodway or a statement by the community that it has notified all affected property owners and affected adjacent jurisdictions.

9. Does the State have jurisdiction over the floodway or its adoption by communities participating in the NFIP?

Yes No

If yes, attach a copy of a letter notifying the appropriate State agency of the floodway revision and documentation of the approval of the revised floodway by the appropriate State agency.

3. PROPOSED ENCROACHMENTS

10. With floodways:

- 1A. Does the revision request involve fill, new construction, substantial improvement, or other development in the floodway? Yes No
- 1B. If yes, does the development cause the 100-year water surface elevation to increase at any location by more than 0.000 feet? Yes No

11. Without floodways:

- 2A. Does the revision request involve fill, new construction, substantial improvement, or other development in the 100-year floodplain? Yes No
- 2B. If yes, does the cumulative effect of all development that has occurred since the effective SFHA was originally identified cause the 100-year water surface elevation to increase at any location by more than one foot (or other surcharge limit if community or state has adopted more stringent criteria)? Yes No

If the answer to either Items 1B or 2B is yes, please provide documentation that all requirements of Section 65.12 of the NFIP regulations have been met, regarding evaluation of alternatives, notice to individual legal property owners, concurrence of CEO, and certification that no insurable structures are impacted.

4. REVISION REQUESTOR ACKNOWLEDGMENT

12. Having read NFIP Regulations, 44 CFR Ch. I, parts 59, 60, 61, and 72, I believe that the proposed revision is is not in compliance with the requirements of the aforementioned NFIP Regulations.

5. COMMUNITY OFFICIAL ACKNOWLEDGMENT

13. Was this revision request reviewed by the community for compliance with the community's adopted floodplain management ordinances? Yes No

14. Does this revision request have the endorsement of the community? Yes No

If no to either of the above questions, please explain: _____

Please note that community acknowledgment and /or notification is required for all requests as outlined in Section 65.4 (b) of the NFIP Regulations.

6. OPERATION AND MAINTENANCE

15. Does the physical change involve a flood control structure (e.g., levees, floodwalls, channelization, basins, dams)? Yes No

If yes, please provide the following information for each of the new flood control structures:

A. Inspection of the flood control project will be conducted periodically by CITY OF CARLON CITY entity

with a maximum interval of 3 months between inspections.

B. Based on the results of scheduled periodic inspections, appropriate maintenance of the flood control facilities will be conducted by CITY OF CARLON CITY (entity)

to ensure the integrity and degree of flood protection of the structure.

C. A formal plan of operation, including documentation of the flood warning system, specific actions and assignments of responsibility by individual name or title, and provisions for testing the plan at intervals not less than one year, has has not been prepared for the flood control structure.

D. The community is willing to assume responsibility for performing overseeing compliance with the maintenance and operation plans of the ORCHARD AVENUE DENTON FACILITY
(Name)

flood control structure. If not performed promptly by an owner other than the community, the community will provide the necessary services without cost to the Federal government.

Attach operation and maintenance plans

7. REQUESTED RESPONSE FROM FEMA

16. After examining the pertinent NFIP regulations and reviewing the document entitled "Appeals, Revisions, and Amendments to Flood Insurance Maps: A guide for Community Officials," dated January 1990, this request is for a:

a. CLOMR A letter from FEMA commenting on whether a proposed project, if built as proposed, would justify a map revision (LOMR or PMR), or proposed hydrology changes (see 44 CFR Ch. I, Parts 60, 65, and 72).

b. LOMR A letter from FEMA officially revising the current NFIP map to show changes to floodplains, floodways, or flood elevations. LOMRs typically depict decreased flood hazards. (See 44 CFR Ch. I Parts 60 and 65.)

c. PMR A reprinted NFIP map incorporating changes to floodplains, floodways, or flood elevations. Because of the time and cost involved to change, reprint, and redistribute an NFIP map, a PMR is usually processed when a revision reflects increased flood hazards or large-scope changes. (See 44 CFR Ch. I, Parts 60 and 65.)

d. Other: Describe _____

8. FORMS INCLUDED

17. Form 2 entitled, "Certification By Registered Professional Engineer and/or Land Surveyor" must be submitted.

The following forms should be included with this request if (check the included forms):

- Hydrologic analysis for flooding source differs from that used to develop FIRM
- Hydraulic analysis for riverine flooding differs from that used to develop FIRM
- The request is based on updated topographic information or a revised floodplain or floodway delineation is requested
- The request involves any type of channel modification
- The request involves new bridge or culvert or revised analysis of an existing bridge or culvert
- The request involves a new revised levee/floodwall system
- The request involves analysis of coastal flooding
- The request involves coastal structures credited as providing protection from the 100-year flood
- The request involves an existing, proposed, or modified dam
- The request involves structures credited as providing protection from the 100-year flood on an alluvial fan

Hydrologic Analysis Form (Form 3)

Riverine Hydraulic Analysis Form (Form 4)

Riverine /Coastal Mapping Form (Form 5)

Channelization Form (Form 6)

Bridge/Culvert Form (Form 7)

Levee/Floodwall System Analysis Form (Form 8)

Coastal Analysis Form (Form 9)

Coastal Structures (Form 10)

Dam Form (Form 11)

Alluvial Fan Flooding Form (Form 12)

18. The minimum initial review fee for the appropriate request category has been included. Yes No

Initial fee amount: \$ 4300

Check or money order only. Make check or money order payable to : National Flood Insurance Program. If paying by Visa or Mastercard please refer to the credit card information form which follows this form.

or

19. This request is for a project that is for public benefit and is primarily intended for flood loss reduction to insurable structures in identified flood hazard areas which were in existence prior to the commencement of construction of the flood control project. Yes No

or

20. This request is to correct map errors, to include the effects of natural changes within the areas of special flood hazard, or solely to provide more detailed data. Yes No

Note: I understand that my signature indicates that all information submitted in support of this request is correct.

Signature of Revision Requester

MICHAEL A BARTUSEK - PROJECT MANAGER

Printed Name and Title of Revision Requester

ASSOCIATED DESIGN PROFESSIONALS INC

Company Name

(719) 266-5212

Telephone No.

5/6/96

Date

Note: Signature indicates that the community understands, from the revision requester, the impacts of the revision on flooding conditions in the community.

Signature of Community Official

ROBERT W. SAULMON - CITY ENGINEER

Printed Name and Title of Community Official

CITY OF CANON CITY

Community Name

Date

Does this request impact any other communities? Yes No

If yes, attach letters from all affected jurisdictions acknowledging revision request and approving changes to floodway, if applicable.

Note: Although a photograph of physical changes is not required, it may be helpful for FEMA's review.

PUBLIC BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average .23 hour per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing and reviewing the form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden, to: Information Collections Management, Federal Emergency Management Agency, 500 C Street, S.W., Washington, DC 20472; and to the Office of Management and Budget, Paperwork Reduction Project (3067-0148), Washington, DC 20503.

1. This certification is in accordance with 44 CFR Ch. I, Section 65.2

2. I am licensed with an expertise in HYDRAULICS
[example: water resources (hydrology, hydraulics, sediment transport, interior drainage)* structural, geotechnical, land surveying.]

3. I have 24 years experience in the expertise listed above.

4. I have prepared reviewed the attached supporting data and analyses related to my expertise.

5. I have have not visited and physically viewed the project.

6. In my opinion, the following analyses and/or designs, is/are being certified:

REVISED HYDRAULIC ANALYSIS OF NE CANON DRAINAGE AREA SUB-BASIN FROM NE

7. Base upon the following review, the modifications in place have been constructed in general accordance with plans and specifications.

Basis for above statement: (check all that apply)

- a. Viewed all phases of actual construction.
- b. Compared plans and specifications with as-built survey information.
- c. Examined plans and specifications and compared with completed projects.
- d. Other _____

8. All information submitted in support of this request is correct to the best of my knowledge. I understand that any false statement may be punishable by fine or imprisonment under Title 18 of the United States Code, Section 1001.

Name: MICHAEL A. BARTUSEK

(please print or type)

Title: PRESIDENT, ASSOCIATED DESIGN PROFESSIONALS, INC.

(please print or type)

Registration No. 23329

Expiration Date: 5/31/99

State COLORADO

Type of License PROFESSIONAL ENGINEER

Signature

Date

Seal
(Optional)

*Specify Subdiscipline

Note: Insert not applicable (N/A) when statement does not apply.

PUBLIC BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 3.67 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing and reviewing the form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden, to: Information Collections Management, Federal Emergency Management Agency, 500 C Street, S.W., Washington, DC 20472; and to the Office of Management and Budget, Paperwork Reduction Project (3067-0148), Washington, DC 20503.

Community Name: CANON CITY, COLORADO

Flooding Source: NE CANON DRAINAGE AREA (SUB-BASIN From NE)
(One form for each flooding source)

Project Name/Identifier: ORCHARD AVENUE LETTER OF MAP REVIEW

1. HYDROLOGIC ANALYSIS IN FIS

Approximate study stream (Zone A)
 Detailed study stream (briefly explain methodology) _____

2. REASON FOR NEW HYDROLOGIC ANALYSIS

No existing analysis
 Improved data (see data revision on page 3)
 Changed physical conditions of watershed (explain) REGIONAL DETENTION FACILITY HAS REDUCED DOWN STREAM FLOWS

Alternative methodology (justify why the revised model is better than model used in the effective FIS)
PREVIOUS FLOODWAY DELINEATION WAS APPROXIMATE

Evaluation of proposed conditions (CLOMRs only) (explain) _____

Other _____

If a computer program/model was used in revising the hydrologic analysis, please provide a diskette with the input files for the 10-, 50-, 100 - and 500-year recurrence intervals.

Only the 100-year recurrence interval need be included for SFHAs designated as Zone A.

3. APPROVAL OF ANALYSIS

Approval of hydrologic analysis, including the resulting peak discharge value (s) has been provided by the appropriate local, state, or Federal Agency. (i.e., _____)
Attach evidence of approval.

Approval of the hydrologic analysis is not required by any local, State, or Federal Agency.

Stream: NE CANON DRAINAGE AREA (SUB-BASIN FROM NE)

Comparison of 100-year Discharges

Note: When revised discharges are not significantly different than FIS discharges, FEMA may require a confidence limits analysis on attachment D at a later date to complete the review.

As is often the case with revision requests, only a portion of a stream may actually be revised or be affected by a revision. Therefore, transition to the unrevised portion is important to maintain the continuity of the study. NFIP regulations stipulate that such a transition must be assured. What is the transition from the proposed discharges to the effective discharges? Please explain how the transition was made (*attach separate sheet if necessary*)

100 YR. FLOW OF 926 cfs IS REDUCED TO 160 cfs BY MEANS OF A 37 AC·FT DETENTION FACILITY

ATTACH A COMPLETED REVIEW OF RESULTS PAGE FOR EACH FLOODING SOURCE.

Is the new hydrologic analysis being developed solely to revise the flow values presented in the FIS (*i.e. no changed hydraulic conditions*)? Yes No

If yes, does the 100-year water surface elevation change by 1.0 foot or more? Yes No

FEMA does not normally revise NFIP maps solely due to insignificant flow changes where changes in 100-year water surface elevation are less than 1.0 foot.

5. HISTORICAL FLOODING INFORMATION

Is historical data available for the flooding source? Yes No

If yes, provide the following:

Location along flooding source: _____

Maximum peak discharge: _____ cfs

Second highest peak discharge: _____ cfs

Source of information: _____

6. GAGE RECORD INFORMATION

Location of nearest gage to project site (along flooding source or similar watershed; specify)

None

Gaging Station: _____

Drainage area at gage: _____ mi²

Number of years of data: _____

7. DATA REVISION

Please use the following table to list all the data and/or parameters affected by this request and identify them as new data (*New*) or as revising existing data (*Revised*). (If necessary, attach a separate sheet.)

Data Parameter	New	Revised	Data Source
<u>50-YEAR DISCHARGE</u>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<u>TR 20 RUNOFF MODEL</u>
<u>10-YEAR DISCHARGE</u>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<u>TR 20 RUNOFF MODEL</u>
_____	<input type="checkbox"/>	<input type="checkbox"/>	_____
_____	<input type="checkbox"/>	<input type="checkbox"/>	_____
_____	<input type="checkbox"/>	<input type="checkbox"/>	_____
_____	<input type="checkbox"/>	<input type="checkbox"/>	_____

- Data source can be from a Federal, State, or local government agency, or from a private source. Some State and local governments may have less strict data requirements than Federal agencies, in which case the hydrologic data may not be accepted by FEMA unless it is demonstrated that the data give a better estimate of the flood discharge.
- Attach documentation corroborating each data source (i.e., *certified statement, report, bibliographical reference to a published document*). In the case of a published document or a government report, providing copies of the cover and pertinent pages may be helpful.

8. METHODOLOGY FOR NEW ANALYSIS

Statistical Analysis of Gage Records (*use Attachment A*)
 Regional Regression Equations (*use Attachment B*)
 Precipitation/Runoff Model (*use Attachment C*)
 Other (*specify; attach backup computations and supporting data*) _____

Gaging Station: N/A

Gage Location (latitude and longitude): _____

FIS:

Revised:

1. Number of years of data	
Systematic	
Historical	
2. Homogeneous data	<input type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes	<input type="checkbox"/> No
3. Data adjustments	<input type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes	<input type="checkbox"/> No
4. Number of high outliers	
Low outliers	
Zero events	
5. Generalized skew	
6. Station skew	
7. Adopted skew	
8. Probability distribution used (justify				
if log-Pearson III was not used)			
9. Transfer equations to ungaged sites	<input type="checkbox"/> Yes		<input type="checkbox"/> No	
If yes, specify method			
.....			
.....			
10. Expected probability*	<input type="checkbox"/> Yes		<input type="checkbox"/> No	
11. Comparison of results with other analyses	<input type="checkbox"/> Yes		<input type="checkbox"/> No	
If yes, describe comparison			
.....			
.....			

*FEMA does not accept expected probability analyses for the purpose of reflecting flood hazard information in a FIS.

If any data is not available, indicate by N/A.

Attach analysis including plot of flood frequency curve.

1. Bibliographical Reference:

N/A

(Attach a copy of title page, table of contents, and pertinent pages including equations.)

2. Gaged or ungaged stream:

3. Hydrologic region(s):

Attach backup map.

4. Provide parameters, values, and source of data used to define parameters.

	FIS:		Revised:
5. Urbanized conditions calculations	<input type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes
6. Percent of watershed urbanization			
7. Is the watershed controlled?	<input type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes
8. Comparison with other analyses	<input type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes

If the answer to 5, 7, or 8 is yes, explain methodology in Comments.

If data is not available, indicate by N/A.

Comments

Attach computation and supporting maps, delineating the watershed boundary and drainage area divides.

	FIS:	Revised
1. Method or model used:	T220
Version:	2
Date:	9/83
2. Source of rainfall depth:	NOAA 2, VOL III
3. Source of rainfall distribution:	NOAA 2, VOL III
4. Rainfall duration:	24 Hr
5. Areal adjustment to precipitation (%):	0 %
6. Maximum overland flow length	500 FT
7. Hydrograph development method:	UNIT HYDROGRAPH
8. Loss rate method:	AMC II
Source of soils information:	SCS
Source of land use information	FREMONT CO.
9. Channel routing method:	MOD. AT- KIN
10. Reservoir routing:	<input type="checkbox"/> Yes <input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
11. Baseflow considerations:	<input type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
If yes, explain how baseflow was determined: <hr/> <hr/> <hr/>		
12. Snowmelt considerations:	<input type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
13. Model calibration:	<input type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
If yes, explain how calibration was performed <hr/> <hr/> <hr/>		
14. Future land use condition:	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
If yes, explain why <hr/> <hr/> <hr/>		
<p>NOTE: FEMA policy is to base flooding on existing conditions. If data is not available, indicate by N/A.</p>		

Attach precipitation/runoff model, hydrologic model schematic, curve number calculations, time of concentration calculations, and supporting maps, delineating the watershed boundary and drainage area divides.

Stream: NE CANON DRAINAGE AREA (SUB-BASIN FROM NE)Select one location for Confidence Limits Evaluation (describe location): FLOW SOUTH OF HIGH ST.

Discharges for selected location:

Exceedance Probability	FIS	Revised
10% (10-year)	— cfs	<u>408</u> cfs
2% (50-year)	— cfs	<u>741</u> cfs
1% (100-year)	<u>926</u> cfs	<u>926</u> cfs
0.2% (500-year)	— cfs	— cfs

1% (100-year) Flood Confidence Intervals

90% Confidence Interval: 5% limit _____ cfs
 95% limit _____ cfs

50% Confidence Interval: 25% limit _____ cfs
 75% limit _____ cfs

If the value of the 100-year frequency flood in the FIS is beyond the 50% confidence interval but within the 90% confidence interval, does the 100-year water surface elevation change by 1.0 foot or more? Yes No

An example of confidence limits analysis can be found in Appendix 9 of Bulletin 17B.

Attach Confidence Limits Analysis.

PUBLIC BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 2.25 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing and reviewing the form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden, to: Information Collections Management, Federal Emergency Management Agency, 500 C Street, S.W., Washington, DC 20472; and to the Office of Management and Budget, Paperwork Reduction Project (3067-0148), Washington, DC 20503.

Community Name: CANON CITYFlooding Source: NE DRAINAGE AREA (SUB-BASIN FROM NE)
(One form for each flooding source)Project Name/Identifier: ORCHARD AVENUE LETTER OF MAP REVISION

1. REACH TO BE REVISED

Downstream limit: 30 ft DOWNSTREAM OF SOUTH STREETUpstream limit: 2000 ft UPSTREAM OF SOUTH STREET

2. EFFECTIVE FIS

 Not studied Studied by approximate methodsDownstream limit of study 700 FT NORTH OF CENTRAL ST.Upstream limit of study HIGH STREET Studied by detailed methods

Downstream limit of study _____

Upstream limit of study _____

 Floodway delineated

Downstream limit of Floodway _____

Upstream limit of Floodway _____

3. HYDRAULIC ANALYSIS

Why is the hydraulic analysis different from that used to develop the FIRM. (Check all that apply)

 Not studied in FIS Improved hydrologic data/analysis. Explain: _____

Improved hydraulic analysis. Explain: EXISTING CHANNEL ELEVATION. DO NOT MATCH FEMA ELEVATIONS. ANALYSIS RERUN WITH MORE ACCURATE MAPPING. ORIGINAL STUDY WAS APPROXIMATE ONLY

 Flood control structure. Explain: _____

 Other. Explain: _____

For areas which have detailed flooding:

Full input and output listings along with files on diskette (if available) for each of the models listed below (items 1, 2, 3, 4, and 5) and summary of the source of input parameters used in the models must be provided. The summary must include a complete description of any changes made from model to model (e.g. duplicate effective model to corrected effective model). At a minimum, the Duplicate Effective (item 1) and the Revised or Post-Project Conditions (item 4) models must be submitted. See instructions for directions on when other models may be required.

For areas which do not have detailed flooding:

Only the 100-year flood profile is required. A hydraulic model is not required for areas which do not have detailed flooding; however, BFEs may not be added to the revised FIRM. If a hydraulic model is developed for the area, items 3 and 4 described below must be submitted.

If hydraulic models are not developed, hydraulic analyses for existing or pre-project conditions and revised or post-project conditions must be submitted. All calculations must be submitted for these analyses. (See item 6 below)

1. Duplicate Effective Model

Copies of the hydraulic analysis used in the effective FIS, referred to as the effective models (*10-, 50-, 100-, and 500-year multi-profile runs and the floodway run*) must be obtained and then reproduced on the requestor's equipment to produce the duplicate effective model. This is required to assure that the effective model input data has been transferred correctly to the requestor's equipment and to assure that the revised data will be integrated into the effective data to provide a continuous FIS model upstream and downstream of the revised reach.

Natural Floodway

2. Corrected Effective Model

The corrected effective model is the model that corrects any errors that occur in the duplicate effective model, adds any additional cross sections to the duplicate effective model, or incorporates more detailed topographic information than that used in the currently effective model. The corrected effective model must not reflect any man-made physical changes since the date of the effective model. An error could be a technical error in the modeling procedures, or any construction in the floodplain that occurred prior to the date of the effective model but was not incorporated into the effective model.

Natural Floodway

3. Existing or Pre-Project Conditions Model

The duplicate effective or corrected model is modified to produce the existing or pre-project conditions model to reflect any modifications that have occurred within the floodplain since the date of the effective model but prior to the construction of the project for which the revision is being requested. If no modification has occurred since the date of the effective model, then this model would be identical to the corrected effective or duplicate effective model.

Natural Floodway

4. Revised or Post-Project Conditions Model

The existing or pre-project conditions model (*or duplicate effective or corrected effective model, as appropriate*) is revised to reflect revised or post-project conditions. This model must incorporate any physical changes to the floodplain since the effective model was produced as well as the effects of the project. When the request is for proposed project this model should reflect proposed conditions.

Natural Floodway

5. Other: Please attach a sheet describing all other models submitted.

Natural Floodway

6. Hydraulic Analyses (Only if Hydraulic Models are not developed)

Please attach all calculations for the existing or pre-project conditions and the revised or post-project conditions. Proceed to Form 5, "Riverine/Coastal Mapping Form".

1. Discharges:	Upstream Limit	Downstream Limit
10-year	—	—
50-year	—	—
100-year	926	926
500-year	—	—

Attach diagram showing changes in 100-year discharge

2. Explain how the starting water surface elevations were determined USING MANNING'S EQUATION WITH BED SLOPE DETERMINED FROM MAPS AND CHANNEL GEOMETRY DETERMINED BY SITE VISIT

3. Give range of friction loss coefficients (Manning's "N") Channel 0.040
Overbanks 0.060

If friction loss coefficients are different anywhere along the revised reach from those used to develop the FIRM, give location, value used in the effective FIS, and revised values and an explanation as to how the revised values were determined.

<u>Location</u>	<u>FIS</u>	<u>Revised</u>

Explain: _____

4. Describe how the cross section geometry data were determined (e.g., field survey, topographic map, taken from previous study) and list cross sections that were added.

CROSS SECTION LOCATIONS BASED ON INFORMATION PROVIDED ON FIRM MAPS
WITH ADDITIONAL LOCATIONS ADDED AT DRAINAGE BASIN AND AT CULVERTS
ELEVATIONS BASED ON AERIAL MAPPING AND USGS BENCHMARKS

5. Were natural channel banks selected as the location of the left and right channel banks in the model?

Yes No If no, explain why not: _____

6. Explain how reach lengths for channel and overbanks were determined:

REACH LENGTHS DETERMINED FROM INFORMATION PROVIDED ON FIRM MAPS AND ADDITIONAL CROSS-SECTIONS.

5. RESULTS (from model used to revise 100-year water surface elevations)

1. Do the results indicate:

a. Water surface elevations higher than end points of cross sections? Yes No

b. Supercritical depth? Yes No

c. Critical depth? Yes No

d. Other unique situations Yes No

If yes to any of the above, attach an explanation that discusses the situation and how it is presented on the profiles, tables, and maps.

2. What is the maximum change in energy gradient between cross-sections? 11.02 ft

Specify location SECTION 9 TO 10

3. What is the distance between the cross-sections in 2 above? 567 ft

4. What is the maximum distance between cross-sections? 566 ft

Specify location SECTION 3 TO 4

5. Floodway determination

a. What is the maximum surcharge allowed by the community or State? 1.0

foot

b. What is the maximum surcharge for the revised conditions? 0.0

foot

Specify location —

c. What is the maximum velocity? 9.22

fps

Specify location SECTION 8

d. Are there any negative surcharge values at any cross-section?

Yes No

If yes, the floodway may need to be widened. If it is not widened, please explain and indicate the maximum negative surcharge.

Explain:

6. Is the discharge value used to determine the floodway anywhere different from that used to determine the natural 100-year flood elevations? Yes No

If Yes, explain:

7. Do 100-year water surface elevations increase at any location? Yes No

If yes, please attach a list of the locations where the increases occur, state whether or not the increases are located on the requestor's property, and provide an explanation of the reason for the increases. (For example: State if the increase is due to fill placed within the floodway fringe or placed within the currently adopted floodway limits)

SECTIONS 6, 5 & 4 HAVE INCREASED USE AS COMPARED TO PRE-DEVELOPED COND'S
DUE TO PROSS SECTION LOCATION NEAR CULVERTS...

Please attach a completed comparison table entitled: Water Surface Elevation Check (See page 6)

6. REVISED FIRM/FBFM AND FLOOD PROFILES

A. The revised water surface elevations tie into those computed by the effective FIS Model (10-, 50-, 100-, and 500-year), downstream of the project at cross-section _____ within _____ feet (vertical) and upstream of the project at cross section _____ within _____ feet (vertical). — *NO STUDIED CROSS SECTION DATA TO TIE INTO. i.e. UNSTUDIED AREA*

B. The revised floodway elevations tie into those computed by the effective FIS model, downstream of the project at cross section _____ within _____ feet (vertical) and upstream of the project at cross section _____ within _____ feet (vertical). — *NO STUDIED CROSS SECTION DATA TO TIE INTO, i.e. UNSTUDIED AREA*

C. Attach profiles, at the same vertical and horizontal scale as the profiles in the effective FIS report, showing stream bed and profiles of all floods studied (without encroachment). Also, label all cross sections, road crossings (including low chord and top-of-road data), culverts, tributaries, corporate limits, and study limits. If channel distance has changed, the stationing should be revised for all profile sheets.

D. Attach a Floodway Data Table showing data for each cross section listed in the published Floodway Data Table in the FIS report.

Proceed to Riverine /Coastal Mapping Form

FEDERAL EMERGENCY MANAGEMENT AGENCY
WATER SURFACE ELEVATION CHECK

COMMUNITY NAME <i>CANON CITY, COLORADO</i>							FLOODING SOURCE <i>NE CANON DRAINAGE AREA (SUE - PAIN FROM NE)</i>			PROJECT NAME / IDENTIFIER <i>ORCHARD AVENUE LETTER OF /VIAP REVISION</i>					
EFFECTIVE			DUPLICATE EFFECTIVE			CORRECTED EFFECTIVE			EXISTING/PRE-PROJECT			REVISED/PROJECT			
SECNO	NCWSEL ¹	FCWSEL ²	SURC. ³	NCWSEL ¹	FCWSEL ²	SURC. ³	NCWSEL ¹	FCWSEL ²	SURC. ³	NCWSEL ¹	FCWSEL ²	SURC. ³	NCWSEL ¹	FCWSEL ²	SURC. ³
11										5437.82	N/A	N/A	5437.47	N/A	N/A
10										5437.85	N/A	N/A	5428.04	N/A	N/A
9										5428.02	N/A	N/A	5417.72	N/A	N/A
8										5414.57	N/A	N/A	5409.30	N/A	N/A
7										5409.34	N/A	N/A	5402.97	N/A	N/A
6										5398.52	N/A	N/A	5403.17	N/A	N/A
5.8										5396.97	N/A	N/A	—	—	—
5										5392.73	N/A	N/A	5396.45	N/A	N/A
4										5390.20	N/A	N/A	5390.13	V/A	N/A
3										5377.40	N/A	N/A	5375.69	V/A	N/A
2										5369.20	V/A	N/A	5367.59	N/A	N/A
1										5369.20	N/A	N/A	5365.10	N/A	N/A

COMMENTS:

1-100-year (natural) Water Surface Elevation

2-Encroachment (floodway) Water Surface Elevation

3-Surcharge Value

Include all cross sections in the models between tie-in points. Any interpolated values should be indicated in parentheses.

Sheet 1 of 1 MT-2 / Form 4 Page 6 of 6

ORCHARD AVENUE LOMR
RIVERLINE HYDRAULIC ANALYSIS FORM

Section 5 - Results

Item 1c. Critical Depth

Critical depth occurs at the following Sections: 3, 7, 8, & 10. Critical flow is present at Section 3 due to two 90 bends in the narrow channel. Sections 7 & 8 reach critical depth due to a flow constriction. Section 10 is located at the downstream end of a culvert which has a drop condition at the pipe outlet. No other sections reach critical depth.

PUBLIC BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 1.5 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing and reviewing the form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden, to: Information Collections Management, Federal Emergency Management Agency, 500 C Street, S.W., Washington, DC 20472; and to the Office of Management and Budget, Paperwork Reduction Project (3067-0148), Washington, DC 20503.

Community Name: CANON CITY, COLORADO

Flooding Source: NE CANON DRAINAGE AREA (SUB-BASIN FROM NE)

Project Name/Identifier: ORCHARD AVENUE LETTER OF MAP REVISION

1. MAPPING CHANGES

1. A topographic work map of suitable scale, contour interval, and planimetric definition must be submitted showing (indicate N/A when not applicable):

Included

A. Revised approximate 100-year floodplain boundaries (Zone A)	<input checked="" type="checkbox"/>	Yes	<input type="checkbox"/>	No	<input type="checkbox"/>	N/A
B. Revised detailed 100- and 500-year floodplain boundaries	<input type="checkbox"/>	Yes	<input checked="" type="checkbox"/>	No	<input type="checkbox"/>	N/A
C. Revised 100-year floodway boundaries	<input checked="" type="checkbox"/>	Yes	<input type="checkbox"/>	No	<input type="checkbox"/>	N/A
D. Location and alignment of all cross sections used in the revised hydraulic model with stationing control indicated	<input checked="" type="checkbox"/>	Yes	<input type="checkbox"/>	No	<input type="checkbox"/>	N/A
E. Stream alignments, road and dam alignments	<input type="checkbox"/>	Yes	<input checked="" type="checkbox"/>	No	<input type="checkbox"/>	N/A
F. Current community boundaries	<input type="checkbox"/>	Yes	<input type="checkbox"/>	No	<input checked="" type="checkbox"/>	N/A
G. Effective 100- and 500-year floodplain and 100-year floodway boundaries from the FIRM/FBFM reduced or enlarged to the scale of the topographic work map	<input type="checkbox"/>	Yes	<input type="checkbox"/>	No	<input checked="" type="checkbox"/>	N/A
H. Tie-ins between the <u>effective</u> and <u>revised</u> 100- and 500-year floodplains and 100-year floodway boundaries	<input type="checkbox"/>	Yes	<input type="checkbox"/>	No	<input checked="" type="checkbox"/>	N/A
I. The requestor's property boundaries and community easements	<input checked="" type="checkbox"/>	Yes	<input type="checkbox"/>	No	<input type="checkbox"/>	N/A
J. The signed certification of a registered professional engineer	<input checked="" type="checkbox"/>	Yes	<input type="checkbox"/>	No	<input type="checkbox"/>	N/A
K. Location and description of reference marks	<input checked="" type="checkbox"/>	Yes	<input type="checkbox"/>	No	<input type="checkbox"/>	N/A
L. Vertical datum (example: NGVD, NAVD etc.)	<input checked="" type="checkbox"/>	Yes	<input type="checkbox"/>	No	<input type="checkbox"/>	N/A
M. Coastal zone designations tie into adjacent areas not being revised	<input type="checkbox"/>	Yes	<input type="checkbox"/>	No	<input checked="" type="checkbox"/>	N/A
N. Location and alignment of all coastal transects used to revise the coastal analyses	<input type="checkbox"/>	Yes	<input type="checkbox"/>	No	<input checked="" type="checkbox"/>	N/A

If any of the items above are marked no or N/A, please explain: _____

No DATA AVAILABLE

2. What is the source and date of the updated topographic information (example: orthophoto maps, July 1985; field survey, May 1979, beach profiles, June 1987, etc.)? AERIAL PHOTOGRAPHY, 1979, 1995 & FIELD SURVEY

FLOOD HAZARD ANALYSIS, JANUARY 1996

3. What is the scale and contour interval of the following workmaps?

a. Effective FIS 400' scale 2' Contour interval
b. Revision Request 100' scale 1' Contour interval

NOTE: Revised topographic information must be of equal or greater detail.

4. Attach an annotated FIRM and FBFM at the scale of the effective FIRM and FBFM showing the revised 100-year and 500-year floodplains and the 100-year floodway boundaries and how they tie into those shown on the effective FIRM and FBFM downstream and upstream of the revision or adjacent to the area of revision for coastal studies.

Attach additional pages if needed.

1. MAPPING CHANGES (Cont'd)

5. Flood Boundaries and 100-year water surface elevations:

Has the 100-year floodplain been shifted or increased or the 100-year water surface elevation increased at any location on property other than the requestor's or community's? Yes No

If yes, please give the location of shift or increase and an explanation for the increase.

a. Have the affected property owners been notified of this shift or increase and the effect it will have on their property? Yes No

If yes, please attach letters from these property owners stating they have no objections to the revised flood boundaries if a LOMR is being requested.

b. What is the number of insurable structures that will be impacted by this shift or increase? _____

6. Have the floodway boundaries shifted or increased at any location compared to those shown on the effective FBFM or FIRM? Yes No

If yes, explain:

PREVIOUS FLOODWAY DEFINITION WAS APPROXIMATE

7. If a V-zone has been designated, has it been delineated to extend landward to the heel of the primary frontal dune? Yes No

If no, explain:

8. Manual or digital map submission:

Manual
 Digital

Digital map submissions may be used to update digital FIRMs (DFIRMs). For updating DFIRMs, these submissions must be coordinated with FEMA Headquarters as far in advance of submission as possible.

2. EARTH FILL PLACEMENT

1. The fill is: Existing Proposed
2. Has fill been/will be placed in the regulatory floodway? Yes No
If yes, please attach completed Riverine Hydraulic Analysis Form.
3. Has fill been/will be placed in floodway fringe (*area between the floodway and 100-year floodplain boundaries*)? Yes No

If yes, then complete A, B, C, and D below.

- A. Are fill slopes for granular materials steeper than one vertical on one-and-one-half horizontal? Yes No
If yes, justify steeper slopes _____
- B. Is adequate erosion protection provided for fill slopes exposed to moving flood waters? (*Slopes exposed to flows with velocities of up to 5 feet per second (fps) during the 100-year flood must, at a minimum, be protected by a cover of grass, vines, weeds, or similar vegetation; slopes exposed to flows with velocities greater than 5 fps during the 100-year flood must, at a minimum, be protected by stone or rock riprap.*) Yes No

If no, describe erosion protection provided _____

- C. Has all fill placed in revised 100-year floodplain been compacted to 95 percent of the maximum density obtainable with the Standard Proctor Test Method or acceptable equivalent method? Yes No
- D. Can structures conceivably be constructed on the fill at any time in the future? Yes No

If yes, provide certification of fill compaction (item C. above) by the community's NFIP permit official, a registered professional engineer, or an accredited soils engineer.

4. Has fill been/will be placed in a V-zone? Yes No

If yes, is the fill protected from erosion by a flood control structure such as a revetment or seawall? Yes No

If yes, attach the coastal structures form.

PUBLIC BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 1.75 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing and reviewing the form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden, to: Information Collections Management, Federal Emergency Management Agency, 500 C Street, S.W., Washington, DC 20472; and to the Office of Management and Budget, Paperwork Reduction Project (3067-0148), Washington, DC 20503.

Community Name: CANON CITY, COLORADO

Flooding Source: NE CANON DRAINAGE AREA (SUB-BASEN FROM NE)

Project Name/Identifier: ORCHARD AVENUE LETTER OF MAP REVISION

1. EXTENT OF CHANNELIZATION

Downstream limit: _____

Upstream limit: _____

2. CHANNEL DESCRIPTION

1. Describe the inlet to the channel FLOW ENTERS THE CHANNEL AT HIGH STREET VIA 2 CMP'S SIZED AT 6 FT AND 5 FT IN DIAMETER

2. Briefly describe the shape of the channel (both cross sectional and planimetric configuration) and its lining (channel bottom and sides) CHANNEL TYPICALLY TRAPEZOIDAL IN SECTION AND STRAIGHT, (NOT MEANDERING). CHANNEL BOTTOM CONSISTS OF .15 TO 20 FT.

3. Describe the outlet from the channel FLOW ENTERS A 42" RCP : AT CENTRAL AVENUE AND CONTINUES SOUTH

4. The channelization includes:

- Levees (Attach Levee Form)
- Drop structures
- Superelevated sections
- Transitions in cross sectional geometry
- Debris basin/detention basin
- Energy dissipater
- Other _____

5. Attach the following:

- a. Certified engineering drawings showing channel alignment and locations of inlet, outlet, and items checked in item 4
- b. Typical cross sections and profiles of channel banks and invert

1. What is the 100-year discharge? 926 cfs

2. Do the cross sections in the hydraulic model match the typical cross sections in the plans? Yes No

3. Are the channel banks higher than the 100-year flood elevations everywhere? Yes No

4. Are the channel banks higher than the 100-year flood energy grade lines everywhere? ... Yes No

5. Is the land on both sides of the channel above the adjacent 100-year flood elevation at all points along the channel? Yes No

6. What is the range of freeboard? 0 - 2 feet

7. What is the range of the 100-year flood velocities? 0.20 - 9.22 ft/sec

8. What is the lining type? (both bottom and sides) ROCK RIPRAP IN HIGH VELOCITY AREAS

Explain how the channel lining prevents erosion and maintains channel stability (attach documentation)

9. What is the design elevation in the channel based on?

Subcritical flow
 Critical flow
 Supercritical flow
 Energy grade line

Is 100-year flood profile based on the above type of flow? Yes No

If no, explain: _____

10. Is there the potential for a hydraulic jump at the following locations?

Inlet to channel Yes No
 Outlet of channel Yes No
 At Drop Structures Yes No
 At Transitions Yes No
 Other locations. Explain: _____

If the answer to any of the above is yes, please explain how the hydraulic jump is controlled and the effects of the hydraulic jump on the stability of the channel.

Explain: _____

1.
 - A. Is there any indication from historical records that sediment transport (including scour and deposition) can affect the 100-year water surface elevations and/or the capacity of the channel? Yes No
 - B. Based on the conditions of the watershed and stream bed, is there a potential for sediment transport (including scour and deposition) to affect the 100-year water surface elevations and /or the capacity of the channel? Yes No
2. If the answer to either 1A or 1B is yes:
 - A. What is the estimated sediment (bed) load?
_____ cfs (attach gradation curve)
 - Explain method used to estimate load _____

 - B. Is the 100-year flood velocity anywhere within the channel less than the 100-year flood velocity of the inlet? Yes No
 - C. Will sediment accumulate anywhere within the channel? Yes No
 - D. Will deposition or scour occur at or near the inlet? Yes No
 - E. Will deposition or scour occur at or near the outlet? Yes No

Attach documentation showing affects on the Hydrologic and Hydraulic analyses

PUBLIC BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 2 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing and reviewing the form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden, to: Information Collections Management, Federal Emergency Management Agency, 500 C Street, S.W., Washington, DC 20472; and to the Office of Management and Budget, Paperwork Reduction Project (3067-0148), Washington, DC 20503.

Community Name: CANON CITY, COLORADO

Flooding Source: NE CANON DRAINAGE AREA (SUB-BASIN FROM NE)

Project Name/Identifier: ORCHARD AVENUE LETTER OF MAP REVISION

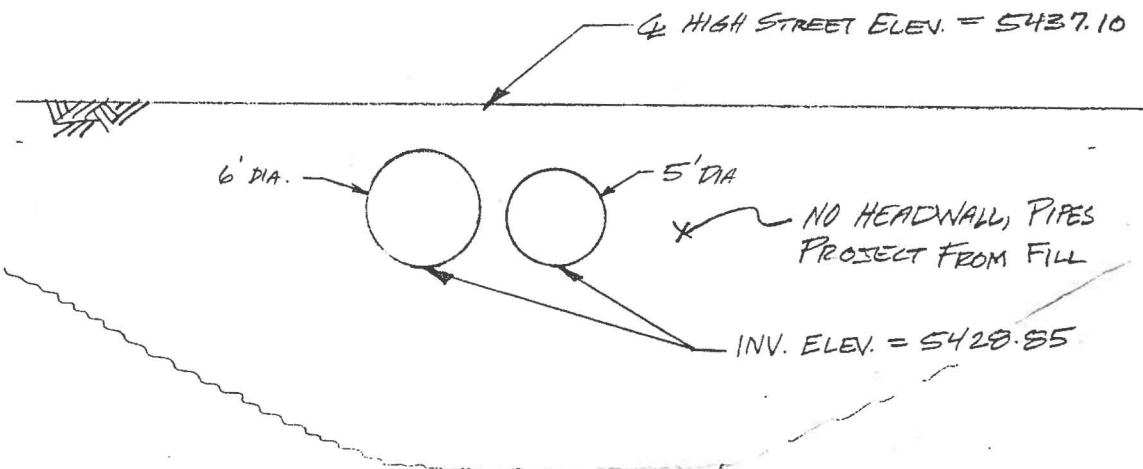
1. IDENTIFIER

1. Name of roadway, railroad, etc.: HIGH STREET
2. Location of bridge/culvert along flooding source (in terms of stream distance or cross-section identifier):
BETWEEN SECTION 10 AND 11
3. This revision reflects (check one of the following):
 New bridge/culvert not modeled in the FIS
 Modified bridge/culvert previously modeled in the FIS
 New analysis of bridge/culvert previously modeled in the FIS
(Explain why new analysis was performed)

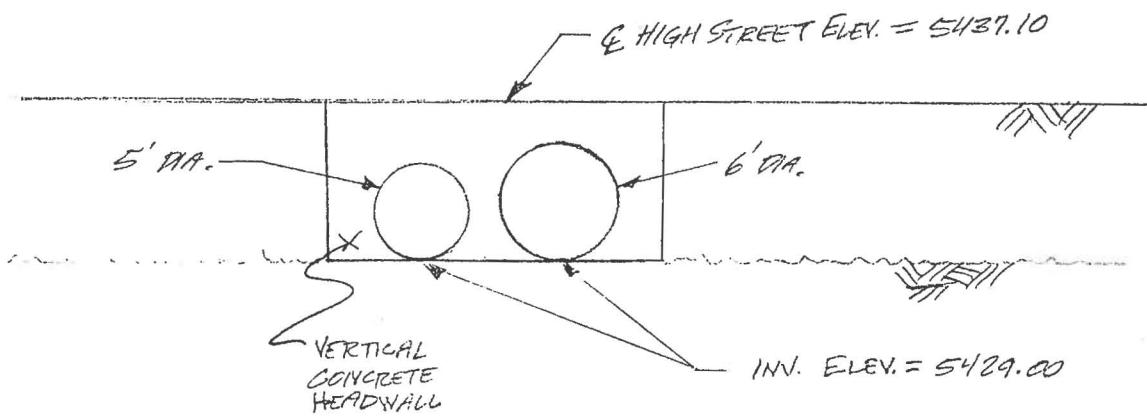
2. BACKGROUND

Provide the following information about the structure:

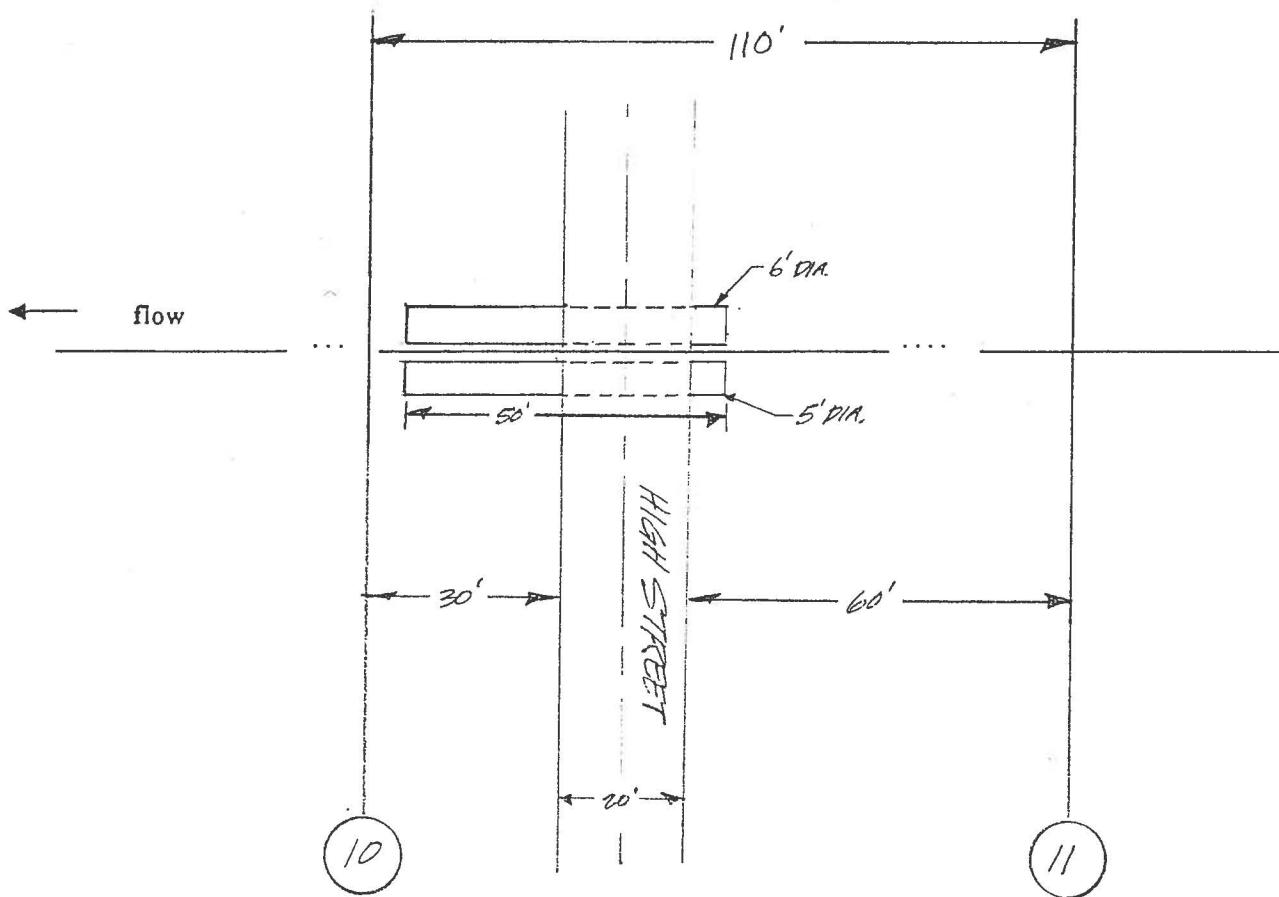
1. Dimension, material, and shape (e.g. two 10 x 5 feet reinforced concrete box culvert; three 30-foot span bridge with 2 rows of two 3- foot diameter circular piers; 40-foot wide ogee shape spillway) TWO CORRUGATED METAL PIPES 5-FOOT AND 6-FOOT IN DIAMETER, 1 FOOT APART
2. Entrance geometry of culvert/type of bridge opening (e.g. 30° - 75° wing walls with square top edge, sloping embankments and vertical abutments) VERTICAL HEAD WALL WITH TWO FEET OF ALLOWABLE HEAD ABOVE 6 FT. DIA. PIPE
3. Hydraulic model used to analyze the structure (e.g., HEC-2 with special bridge routine, WSPRO, HY8) HEC-RAS


If different than hydraulic analysis for the flooding source, justify why the hydraulic analysis used for the flooding source could not analyze the structure(s). (Attach justification)

Note: If any items do not apply to submitted hydraulic analysis, indicate by N/A


* One form per new/revised bridge/culvert

3. ANALYSIS


Sketch the downstream face of the structure together with the road profile. Show, at a minimum, the maximum low chord elevation, invert elevation, and minimum top of road elevation, and ineffective flow widths.

Sketch the upstream face of the structure together with the road profile. Show, at a minimum, the maximum low chord elevation, invert elevation, and minimum top of road elevation.

Sketch the plan view of the structure(s) Show, at a minimum, the skew angle, cross-section locations, distances between cross sections, and length of structure (s).

Attach plans of the structure (s) certified by a registered Professional Engineer.

CULVERTS INSTALLED BY FREMONT COUNTY ROAD DEPARTMENT.

Culvert length or bridge width (ft)

50 ft

Calculated culvert/bridge area (ft²)
by the hydraulic model, if applicable

N/A

Total culvert/bridge area (ft²)

~ 48 ft²

Elevations Above Which Flow is Effective for Overbanks

	Left Overbank	Right Overbank
Upstream face	<u>5436.00</u>	<u>5436.00</u>
Downstream face	<u>5432.91</u>	<u>5433.00</u>

Minimum Top of Road Elevation

	Left Overbank	Right Overbank
Upstream face	<u>5436.55</u>	<u>5436.55</u>
Downstream face	<u>5436.55</u>	<u>5436.55</u>

100-Year Elevations

	Water Surface Elevations	Energy Gradient Elevations
Upstream face	<u>5437.47</u>	<u>5437.48</u>
Downstream face	<u>5428.04</u>	<u>5429.05</u>

Discharge	Low Flow	Pressure Flow	Weir Flow	Total Flow
Amount of flow through/over the structure (s) (cfs)	(5'+6' PIPE) <u>518.58</u>	<u>0</u>	<u>407.42</u>	<u>926</u>

The maximum depth of
flow over the roadway/railroad (ft.)

0.91 ft

Weir length (ft.)

623.10 ft

Top Widths	Total Floodplain Width	Total Effective Flow Width	Floodway Width
Upstream face	<u>668.67</u>	<u>469.42</u>	—
Downstream face	<u>58.92</u>	<u>96.82</u>	—

Loss Coefficients

Entrance loss coefficient	<u>0.5</u>
Manning's "n" value assigned to the structure(s)	<u>0.024</u>
Friction loss coefficient through structure (s)	<u>0.82 + 0.73</u>
Other loss coefficients (e.g., bend manhole, etc.)	<u>5' 6'</u> <u>N/A</u>
Total loss coefficient	<u>0.5</u>
Weir coefficient	<u>2.60</u>
Pier coefficient	<u>N/A</u>
Contraction loss coefficient	<u>0.1</u>
Expansion loss coefficient	<u>0.3</u>

4. SEDIMENT TRANSPORT CONSIDERATIONS

1. A. Is there any indication from historical records that sediment transport (*including scour and deposition*) can affect the 100-year water surface elevations? Yes No

B. Based on the conditions (*such as geomorphology, vegetative cover and development of the watershed and stream bed, and bank conditions*), is there a potential for debris and sediment transport (*including scour and deposition*) to affect the 100-year water surface elevations and/or conveyance capacity through the bridge/culvert? Yes No

2. If the answer to either 1A or 1B is yes:

A. What is the estimated sediment (bed material) load?
_____ cfs (attach gradation curve)

Explain method used to estimate the sediment transport and the depth of scour and/or deposition _____

B. Will sediment accumulate anywhere through the bridge/culvert? Yes No

If yes, explain the impact on the conveyance capacity through the bridge/culvert? _____

5. FLOODWAY ANALYSIS

Explain method of bridge encroachment

(floodway run)

N/A

Comments (explain any unusual situations):

Attach analysis.

PUBLIC BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 2 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing and reviewing the form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden, to: Information Collections Management, Federal Emergency Management Agency, 500 C Street, S.W., Washington, DC 20472; and to the Office of Management and Budget, Paperwork Reduction Project (3067-0148), Washington, DC 20503.

Community Name: CANON CITY, COLORADOFlooding Source: NE CANON DRAINAGE AREA (SUB-BASIN FROM NE)Project Name/Identifier: ORCHARD AVENUE LETTER OF MAP REVISION

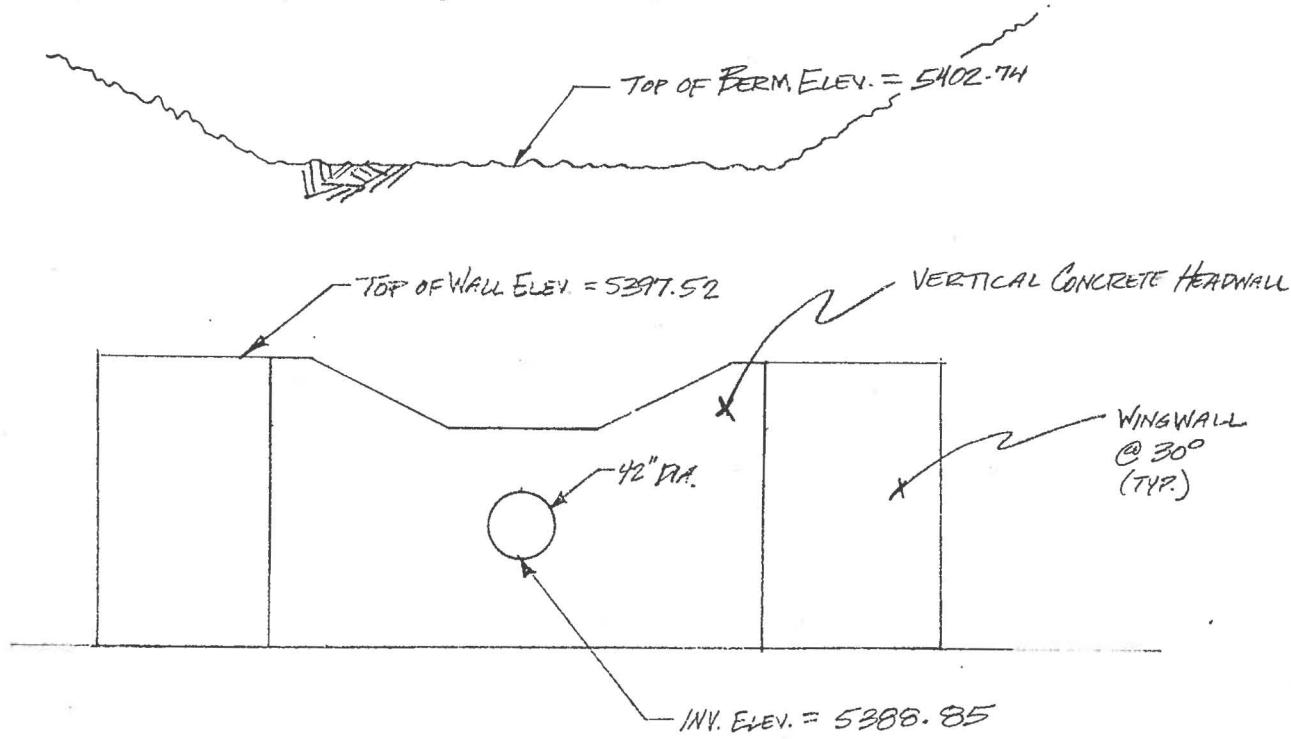
1. IDENTIFIER

1. Name of roadway, railroad, etc.: 42" BASIN CULVERT
2. Location of bridge/culvert along flooding source (in terms of stream distance or cross-section identifier):
APPROX. 50ft NORTH OF SECTION 5
3. This revision reflects (check one of the following):
 New bridge/culvert not modeled in the FIS
 Modified bridge/culvert previously modeled in the FIS
 New analysis of bridge/culvert previously modeled in the FIS
(Explain why new analysis was performed)

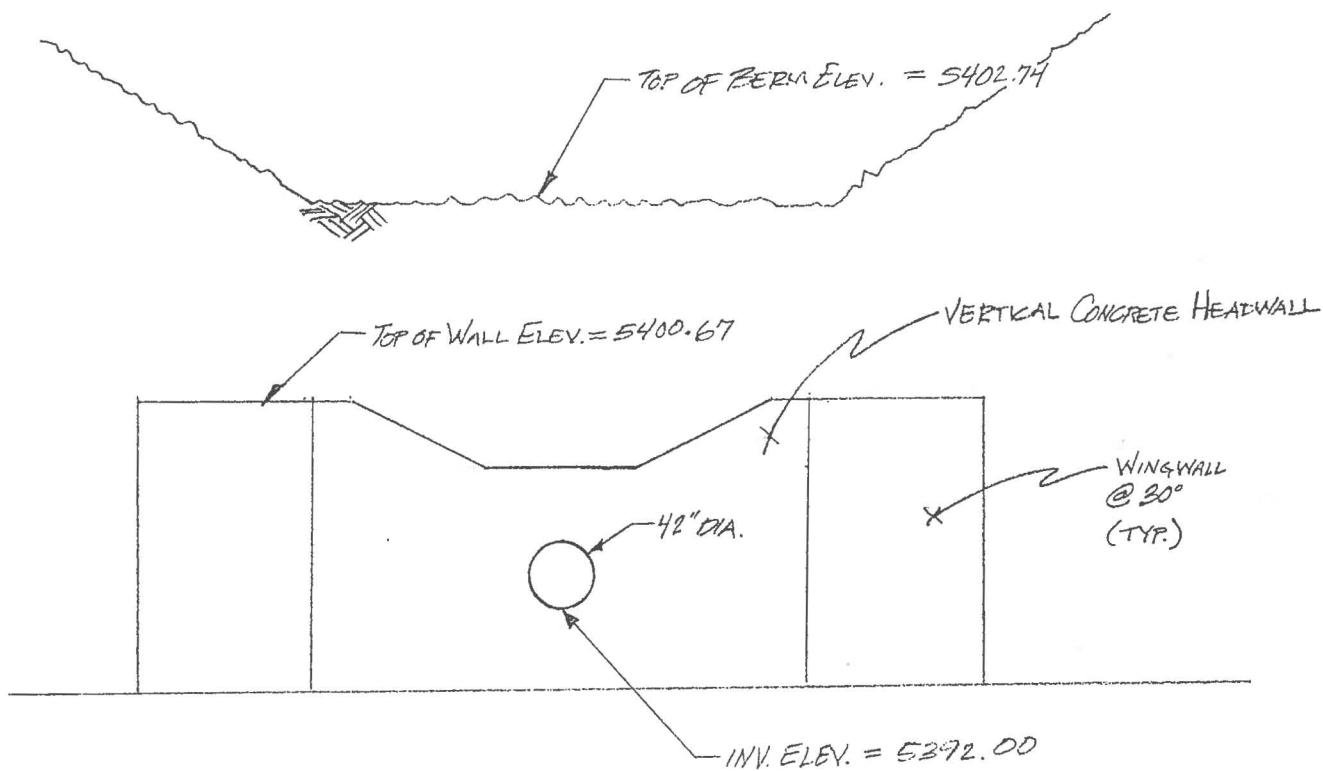
2. BACKGROUND

Provide the following information about the structure:

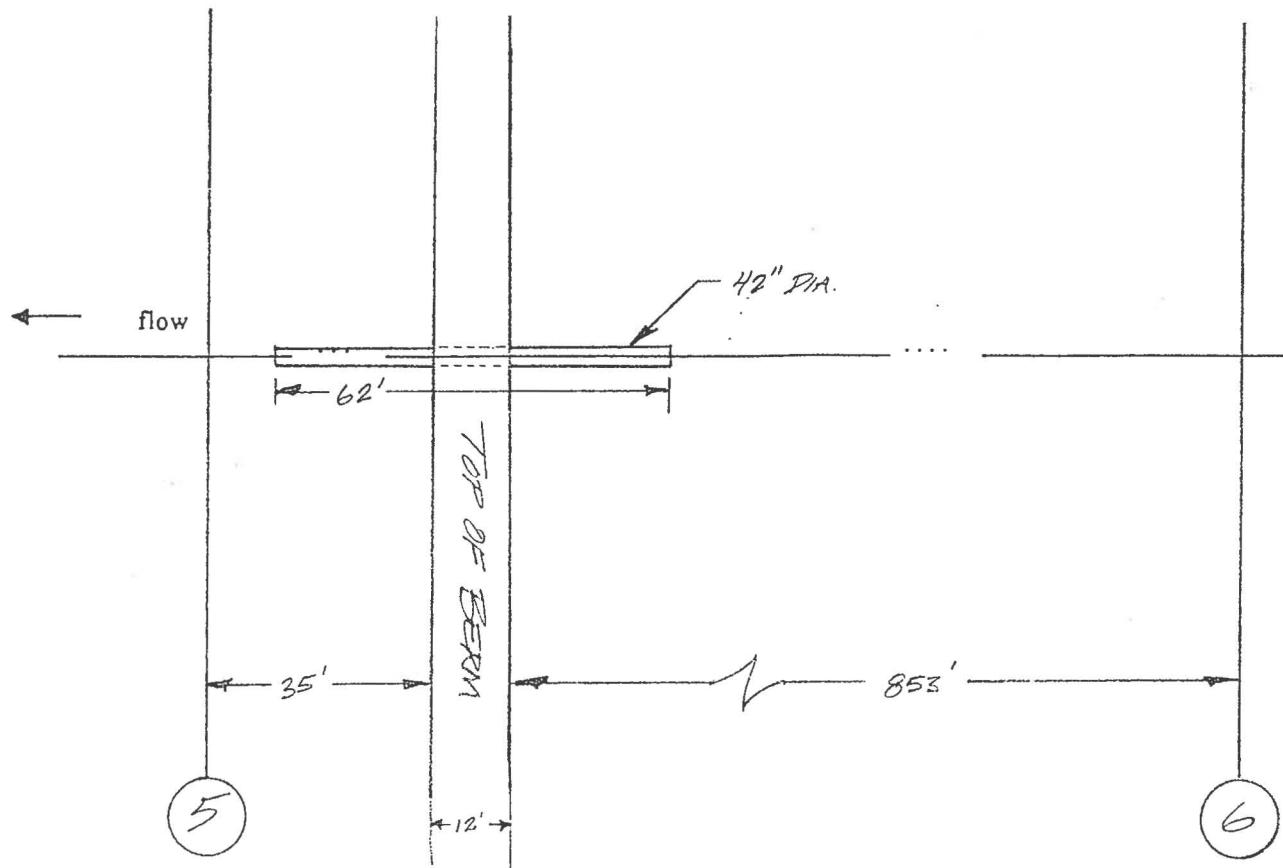
1. Dimension, material, and shape (e.g. two 10 x 5 feet reinforced concrete box culvert; three 30-foot span bridge with 2 rows of two 3-foot diameter circular piers; 40-foot wide ogee shape spillway)
ONE REINFORCED CONCRETE PIPE 48" IN DIAMETER
2. Entrance geometry of culvert/type of bridge opening (e.g. 30° - 75° wing walls with square top edge, sloping embankments and vertical abutments)
MODELED AS VERTICAL HEADWALL WITH 30° WING WALLS
3. Hydraulic model used to analyze the structure (e.g., HEC-2 with special bridge routine, WSPRO, HY8)
HEC-RAS


If different than hydraulic analysis for the flooding source, justify why the hydraulic analysis used for the flooding source could not analyze the structure(s). (Attach justification)

Note: If any items do not apply to submitted hydraulic analysis, indicate by N/A


* One form per new/revised bridge/culvert

3. ANALYSIS


Sketch the downstream face of the structure together with the road profile. Show, at a minimum, the maximum low chord elevation, invert elevation, minimum top of road elevation, and ineffective flow widths.

Sketch the upstream face of the structure together with the road profile. Show, at a minimum, the maximum low chord elevation, invert elevation, and minimum top of road elevation.

Sketch the plan view of the structure(s) Show, at a minimum, the skew angle, cross-section locations, distances between cross sections, and length of structure (s).

Attach plans of the structure (s) certified by a registered Professional Engineer.

Culvert length or bridge width (ft)

62 ft

Calculated culvert/bridge area (ft²)
by the hydraulic model, if applicable

N/A

Total culvert/bridge area (ft²)

9.62 ft²

3. ANALYSIS (Cont'd)

Elevations Above Which Flow is Effective for Overbanks

	Left Overbank	Right Overbank
Upstream face	<u>5396.00</u>	<u>5396.00</u>
Downstream face	<u>5399.00</u>	<u>5399.00</u>

Minimum Top of Road Elevation

	Left Overbank	Right Overbank
Upstream face	<u>5403</u>	<u>5403</u>
Downstream face	<u>5403</u>	<u>5403</u>

100-Year Elevations

	Water Surface Elevations	Energy Gradient Elevations
Upstream face	<u>5407.42</u>	<u>5407.42</u>
Downstream face	<u>5397.77</u>	<u>5397.77</u>

Discharge	Low Flow	Pressure Flow	Weir Flow	Total Flow
Amount of flow through/over the structure (s) (cfs)	<u>174.97</u>	<u>0</u>	<u>750.88</u>	<u>926</u>

The maximum depth of
flow over the roadway/railroad (ft.)

4.42

Weir length (ft.)

748.83

<u>Top Widths</u>	Total Floodplain Width	Total Effective Flow Width	Floodway Width
Upstream face	<u>547.49</u>	<u>490.67</u>	<u>—</u>
Downstream face	<u>29.62</u>	<u>42.81</u>	<u>—</u>

Loss Coefficients

Entrance loss coefficient	0.5
Manning's "n" value assigned to the structure(s)	0.013
Friction loss coefficient through structure (s)	1.94
Other loss coefficients (e.g., bend manhole, etc.)	N/A
Total loss coefficient	0.5
Weir coefficient	2.60
Pier coefficient	N/A
Contraction loss coefficient	0.1
Expansion loss coefficient	0.3

4. SEDIMENT TRANSPORT CONSIDERATIONS

1. A. Is there any indication from historical records that sediment transport (*including scour and deposition*) can affect the 100-year water surface elevations? Yes No
- B. Based on the conditions (*such as geomorphology, vegetative cover and development of the watershed and stream bed, and bank conditions*), is there a potential for debris and sediment transport (*including scour and deposition*) to affect the 100-year water surface elevations and/or conveyance capacity through the bridge/culvert? Yes No
2. If the answer to either 1A or 1B is yes:
 - A. What is the estimated sediment (*bed material*) load?
_____ cfs (attach gradation curve)
 - B. Explain method used to estimate the sediment transport and the depth of scour and/or deposition

 - _____
 - _____
 - _____
 - _____
- B. Will sediment accumulate anywhere through the bridge/culvert? Yes No
If yes, explain the impact on the conveyance capacity through the bridge/culvert?

5. FLOODWAY ANALYSIS

Explain method of bridge encroachment
(floodway run) _____

N/A

5. FLOODWAY ANALYSIS (Cont'd)

Comments (explain any unusual situations):

Attach analysis.

PUBLIC BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 2 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing and reviewing the form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden, to: Information Collections Management, Federal Emergency Management Agency, 500 C Street, S.W., Washington, DC 20472; and to the Office of Management and Budget, Paperwork Reduction Project (3067-0148), Washington, DC 20503.

Community Name: CANON CITY, COLORADO

Flooding Source: NE CANON DRAINAGE AREA (SUB - BASIN FROM NE)

Project Name/Identifier: ORCHARD AVENUE LETTER OF MAP REVISION

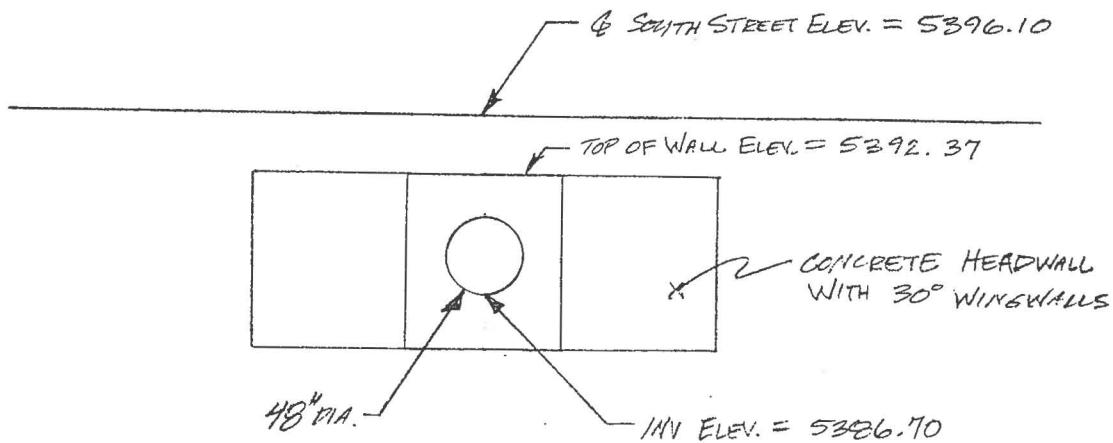
1. IDENTIFIER

1. Name of roadway, railroad, etc.: SOUTH STREET
2. Location of bridge/culvert along flooding source (in terms of stream distance or cross-section identifier):
APPROX. 40 ft. NORTH OF SECTION 4
3. This revision reflects (check one of the following):
 New bridge/culvert not modeled in the FIS
 Modified bridge/culvert previously modeled in the FIS
 New analysis of bridge/culvert previously modeled in the FIS
(Explain why new analysis was performed)

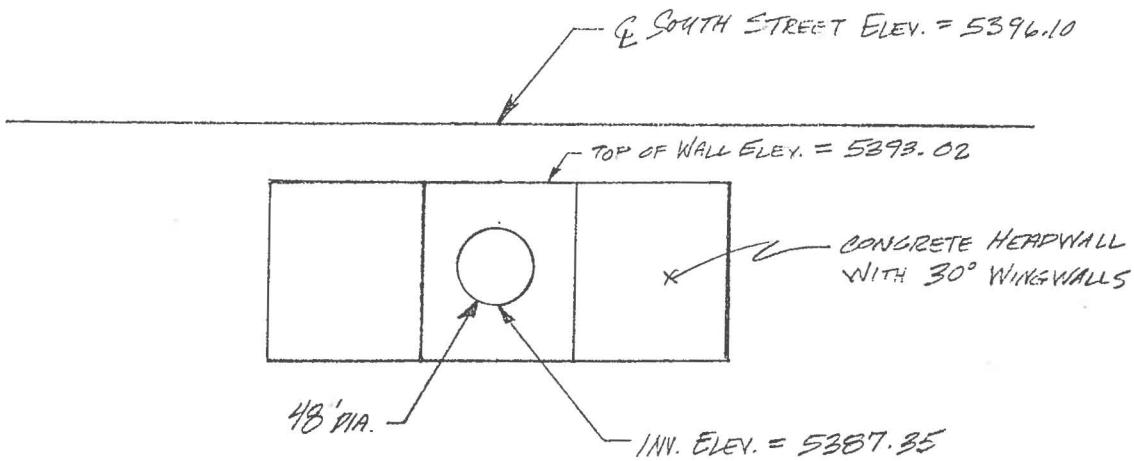
2. BACKGROUND

Provide the following information about the structure:

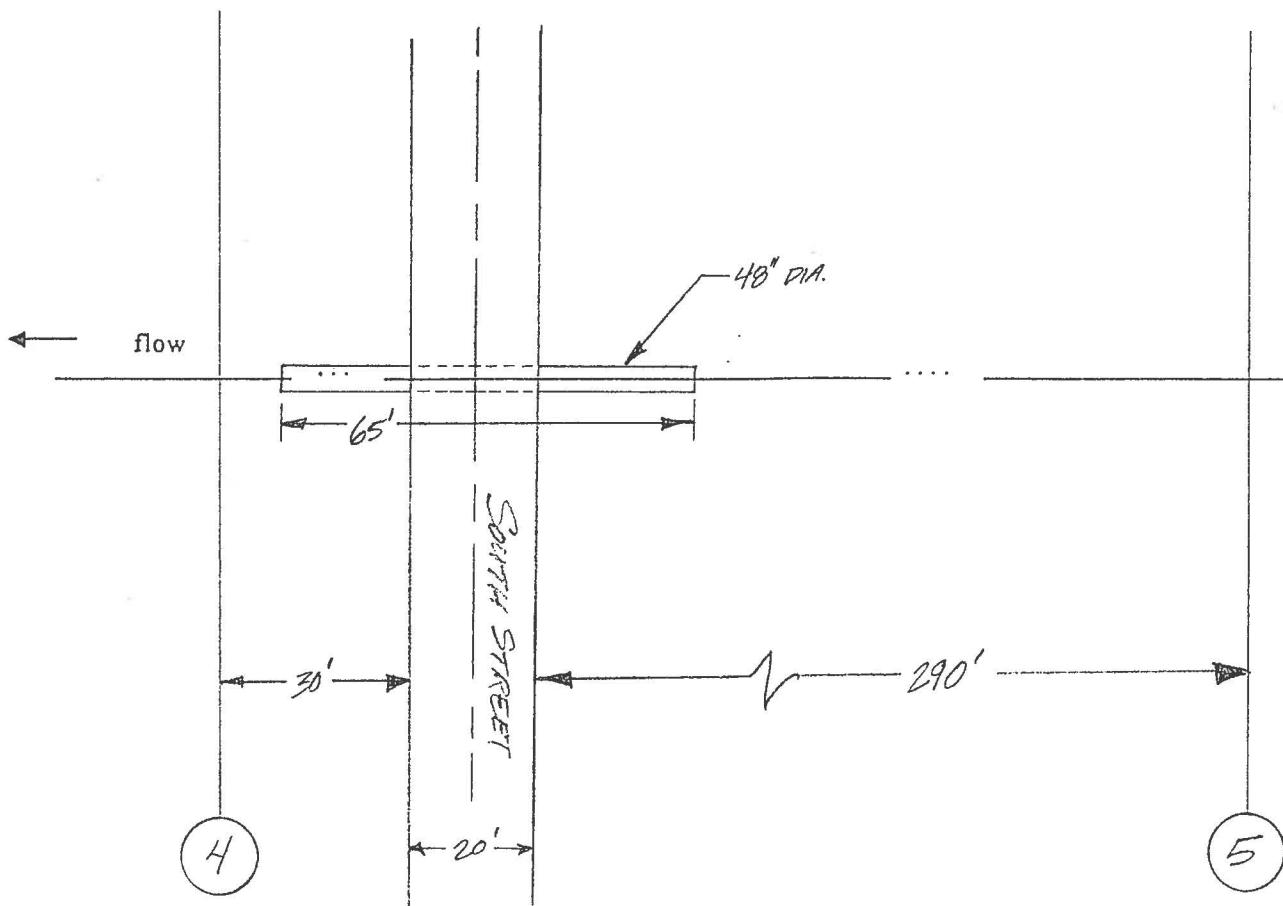
1. Dimension, material, and shape (e.g. two 10 x 5 feet reinforced concrete box culvert; three 30-foot span bridge with 2 rows of two 3- foot diameter circular piers; 40-foot wide ogee shape spillway)
ONE REINFORCED CONCRETE PIPE 48" IN DIAMETER
2. Entrance geometry of culvert/type of bridge opening (e.g. 30° - 75° wing walls with square top edge, sloping embankments and vertical abutments)
VERTICAL HEADWALL. WITH 30° WING WALLS
3. Hydraulic model used to analyze the structure (e.g., HEC-2 with special bridge routine, WSPRO, HY8)
HEC-RAS


If different than hydraulic analysis for the flooding source, justify why the hydraulic analysis used for the flooding source could not analyze the structure(s). (Attach justification)

Note: If any items do not apply to submitted hydraulic analysis, indicate by N/A


* One form per new/revised bridge/culvert

3. ANALYSIS


Sketch the downstream face of the structure together with the road profile. Show, at a minimum, the maximum low chord elevation, invert elevation, minimum top of road elevation, and ineffective flow widths.

Sketch the upstream face of the structure together with the road profile. Show, at a minimum, the maximum low chord elevation, invert elevation, and minimum top of road elevation.

Sketch the plan view of the structure(s) Show, at a minimum, the skew angle, cross-section locations, distances between cross sections, and length of structure (s).

Attach plans of the structure (s) certified by a registered Professional Engineer.

Culvert length or bridge width (ft)

65 ft.

Calculated culvert/bridge area (ft²)
by the hydraulic model, if applicable

N/A

Total culvert/bridge area (ft²)

12.57 ft²

3. ANALYSIS (Cont'd)

Elevations Above Which Flow is Effective for Overbanks

	Left Overbank	Right Overbank
Upstream face	<u>5399.00</u>	<u>5399.00</u>
Downstream face	<u>5396.00</u>	<u>5394.91</u>

Minimum Top of Road Elevation

	Left Overbank	Right Overbank
Upstream face	<u>5397.57</u>	<u>5397.57</u>
Downstream face	<u>5397.57</u>	<u>5397.57</u>

<u>100-Year Elevations</u>	Water Surface Elevations	Energy Gradient Elevations
Upstream face	<u>5397.77</u>	<u>5397.78</u>
Downstream face	<u>5393.41</u>	<u>5393.49</u>

<u>Discharge</u>	Low Flow	Pressure Flow	Weir Flow	Total Flow
Amount of flow through/over the structure (s) (cfs)	<u>156.30</u>	<u>0</u>	<u>3.70</u>	<u>160</u>

The maximum depth of
flow over the roadway/railroad (ft.)

0.21

Weir length (ft.)

30.45

<u>Top Widths</u>	Total Floodplain Width	Total Effective Flow Width	Floodway Width
Upstream face	<u>29.62</u>	<u>42.81</u>	<u>—</u>
Downstream face	<u>12.85</u>	<u>310.38</u>	<u>—</u>

Loss Coefficients

Entrance loss coefficient	0.5
Manning's "n" value assigned to the structure(s)	0.013
Friction loss coefficient through structure (s)	0.77
Other loss coefficients (e.g., bend manhole, etc.)	N/A
Total loss coefficient	0.5
Weir coefficient	2.60
Pier coefficient	N/A
Contraction loss coefficient	0.1
Expansion loss coefficient	0.3

4. SEDIMENT TRANSPORT CONSIDERATIONS

1. A. Is there any indication from historical records that sediment transport (*including scour and deposition*) can affect the 100-year water surface elevations? Yes No
- B. Based on the conditions (*such as geomorphology, vegetative cover and development of the watershed and stream bed, and bank conditions*), is there a potential for debris and sediment transport (*including scour and deposition*) to affect the 100-year water surface elevations and/or conveyance capacity through the bridge/culvert? Yes No
2. If the answer to either 1A or 1B is yes:
 - A. What is the estimated sediment (*bed material*) load?
_____ cfs (attach gradation curve)
 - Explain method used to estimate the sediment transport and the depth of scour and/or deposition _____

 - B. Will sediment accumulate anywhere through the bridge/culvert? Yes No
If yes, explain the impact on the conveyance capacity through the bridge/culvert? _____

5. FLOODWAY ANALYSIS

Explain method of bridge encroachment

(floodway run)

N/A

5. FLOODWAY ANALYSIS (Cont'd)

Comments (explain any unusual situations):

Attach analysis.

PUBLIC BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 3.0. hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing and reviewing the form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden, to: Information Collections Management, Federal Emergency Management Agency, 500 C Street, S.W., Washington, DC 20472; and to the Office of Management and Budget, Paperwork Reduction Project (3067-0148), Washington, DC 20503.

Community Name: CANON CITY, COLORADOFlooding Source: NE CANON DRAINAGE AREA (SUB-BASIN FROM NE)Project Name/Identifier: ORCHARD AVENUE LETTER OF MAP REVISION

REACH TO BE REVISED

Downstream limit: 30 ft DOWNSTREAM OF SOUTH STREETUpstream limit: 2000 ft UPSTREAM OF SOUTH STREET

This Levee/Floodwall analysis is based on:

- upgrading of an existing levee/floodwall system
- a newly constructed levee/floodwall system
- reanalysis of an existing levee/floodwall system

LEVEE/FLOODWALL SYSTEM ELEMENTS

1. Levee elements and locations are:

- earthen embankment, dike, berm etc.
- structural floodwall
- other (describe) _____

Station 1 to 11
Station _____ to _____
Station _____ to _____

Structural Type:

- monolithic cast-in place reinforced concrete
- reinforced concrete masonry block
- sheet piling
- other (describe) _____

2. Has this levee/floodwall system been certified by a Federal agency to provide protection against the 100-year flood event?

Yes No

If yes, by which agency? _____

If yes, complete only the interior drainage section on pages 7 and 8 of this form and the operation and maintenance section of Revision Requestor and Community Official Form.

3. Attach certified drawings containing the following information (indicate drawing sheet numbers):

- a. Plan of the levee embankment and floodwall structures. Sheet Numbers 5
- b. A profile of the levee/floodwall system showing the 100-year water surface elevations, levee and/or wall crest and foundation, and closure locations for the total levee system. Sheet Numbers 6
- c. A profile of the 100-year water surface elevation, closure opening outlet and inlet invert elevations, type and size of opening, and kind of closure device. Sheet Numbers 6
- d. A layout detail for the embankment protection measures. Sheet Numbers 3
- e. Location, layout, and size and shape of the levee embankment features, foundation treatment, floodwall structure, closure structures, and pump stations. Sheet Numbers 3, 5

FREEBOARD

1. The minimum freeboard provided above the 100-year water surface elevation is:

Riverine

- 3.0 feet or more at the downstream end and throughout
- 3.5 feet or more at the upstream end
- 4.0 feet immediately upstream and downstream of all structures and constrictions

Yes No
 Yes No
 Yes No

Coastal

1.0 foot above the height of the one percent wave for the 100-year stillwater surge elevation or maximum wave runup (whichever is greater).

Yes No

2.0 feet above 100-year stillwater surge elevation

Yes No

Please note, occasionally exceptions are made to the minimum freeboard requirement. If an exception is requested, attach documentation addressing Part 65.10 (b) (1) (ii) of the National Flood Insurance Program regulations.

If no is answered to any of the above, please explain where and why:

2. Is there an indication from historical records that ice-jamming can effect the 100-year water surface elevation?
 Yes No If yes, provide ice-jam analysis profile and evidence that the minimum freeboard discussed

3. Tabulate the elevations at critical locations (tabulate values at each levee crest grade change).

(Extend table on an added sheet as needed and reference)

SEDIMENT TRANSPORT CONSIDERATIONS

1. A. Is there any indication from historical records that sediment transport (including scour and deposition) can affect the 100-year water surface elevations?
 Yes No

B. Based on the conditions (such as geomorphology, vegetative cover and development of the watershed and stream bed, and bank conditions), is there a potential for debris and sediment transport (including scour and deposition) to affect the 100-year water surface elevations and/or the freeboard for the levee/floodwall?
 Yes No

2. If the answer to either 1A or 1B is yes:

A. What is the estimated sediment (bed material) load?
 cfs (attach gradation curve)

Explain method used to estimate the sediment transport and the depth of scour and/or deposition

B. Will sediment accumulate anywhere along the levee/floodwall (such as along any bends in the channel)?

Yes No

If yes, what is the minimum freeboard at these locations? _____ feet.

CLOSURES

1. Openings through the levee system:

exist do not exist

If openings exist, list all closures:

Channel Station	Left or Right Bank	Opening Type	Highest Elevation for Opening Invert	Type of Closure Device
5.5	N/A	NOTCH WIER	5402.74	NONE

(Extend table on an added sheet as needed and reference)

Geotechnical and geologic data:

In addition to the required detail analysis reports, data obtained during field and laboratory investigations and used in the design analysis should be submitted in a tabulated summary form for the following levee system features. (Reference U.S. Army Corps of Engineers EM-1110-2-1906 Form 2086).

EMBANKMENT PROTECTION

1. The maximum levee slope landside is 3:1

2. The maximum levee slope floodside is 3:1

3. The range of 100-year riverine flood velocities along the levee? 1.01 (min.)
to 0.04 (max.)

Embankment material is protected by (describe the kind):

18" GRAVITY RIPRAP (D₅₀ = 18") 36" THICK

Riprap Design Parameters: (Include references)

Velocity;

Tractive stress

<u>Reach</u>	<u>Sideslope</u>	<u>Flow depth</u>	<u>Velocity</u>	<u>Curve or Straight</u>	<u>Stone Riprap</u>	<u>Depth of Toedown</u>	
<u>Reach</u>	<u>Sideslope</u>	<u>Flow depth</u>	<u>Velocity</u>	<u>Curve or Straight</u>	<u>D₁₀₀</u>	<u>D₅₀</u>	<u>Thickness</u>
Sta <u>6</u> to <u>—</u>	<u>3:1</u>	<u>1.17'</u>	<u>0.04</u>	<u>STRAIGHT</u>	<u>18"</u>	<u>36"</u>	<u>N/A</u>
Sta <u>5</u> to <u>—</u>	<u>3:1</u>	<u>7.60</u>	<u>1.01</u>	<u>STRAIGHT</u>	<u>18"</u>	<u>36"</u>	<u>N/A</u>
Sta <u>—</u> to <u>—</u>							

(Extend table on an added sheet as needed and reference)

Has a bedding/filter analysis and design been included Yes No

Describe the analysis for other kinds of protection used (include copies of the design analysis):

Note: Attach engineering analysis to support construction plans.

1. Identify locations and describe the basis for selection of critical locations for analyses: STATIONS ARE LOCATED U/S AND D/S OF BERM TO MODEL CULVERT FLOWS ADEQUATELY

Overall height: Sta 5.5, height 13 ft.

Limiting foundation soil strength:

Sta 5.5, depth 9 ft to 30 ft (FROM EMBANKMENT TOP)

strength $\phi = 0$ degrees, $c = 250$ psf

slope: $SS = 3$ (h) to 1 (v)

(Repeat as needed on an added sheet for additional slopes and locations)

2. Specify the embankment stability analyses methodology used (e.g. circular arc, sliding block, infinite slope, etc.): CIRCULAR ARC (BISHOP'S MODIFIED)

3. Summary of stability analysis results:

<u>Case</u>	<u>Loading Conditions</u>	<u>Critical Safety Factor</u>	<u>Criteria (Min.)</u>
I	End of construction	<u>1.41</u>	1.3
II	Sudden drawdown	<u>N/A</u>	1.0
III	Critical flood stage	<u>1.43</u>	1.4
IV	Steady seepage at flood stage	<u>N/A</u>	1.4
VI	Earthquake (Case I)	<u>N/A</u>	1.0

(Reference: U.S. Army Corps of Engineers EM-1110-2-1913 Table 6-1)

4. Was a seepage analysis for the embankment performed? Yes No

Describe methodology used: _____

5. Was a seepage analysis for the foundation performed? Yes No

Were uplift pressures at the embankment landside toe checked? Yes No

Were seepage exit gradients checked for piping potential? Yes No

6. The duration of 100-year flood hydrograph against the embankment is 24 Hrs.

Note: Attach engineering analysis to support construction plans.

Kumar & Associates, Inc.

Geotechnical & Environmental Engineers

April 30, 1998

3015 Pennsylvania Avenue
Colorado Springs, CO 80907
(719) 632-7009
Fax 632-1049
E-Mail: kumar@henge.com
www.henge.com/~kumar

Corporate Office - Denver, CO
Branch Office - Ft. Collins, CO

Associated Design Professionals, Inc.
1861 Austin Bluffs Parkway, Suite 101
Colorado Springs, Colorado 80918

Attn: Mr. Michael Bartusek, P.E.

Subject: Proposed Detention Embankment, Orchard Avenue Detention Pond, Cañon City,
Colorado

Project No. 96-557

Gentlemen:

In accordance with your request, we have prepared this letter to address stability of the embankment slopes for the Orchard Avenue Detention Pond. In order to prepare this letter, we have reviewed our December 18, 1996, report entitled "Geotechnical Engineering Study, Proposed Orchard Detention Pond, Canon City, Colorado," and your April 8, 1998, correspondence, including the sheet entitled "Embankment and Foundation Stability."

It is understood that the embankment was constructed of on-site clay soils with slopes at an inclination of 3 horizontal to 1 vertical on both the pond side and exterior side. The pond side of the embankment was constructed to a maximum height of 13 feet by excavation of approximately 4 feet of soil from the toe of the slope and the placement of approximately 9 feet of fill. The exterior slope was constructed to a maximum height of approximately 9 feet by the placement of fill.

We have performed stability analysis of the proposed embankment slopes. Strength parameters were estimated based on pocket penetrometer testing, index property tests and sampler penetration blow counts. The parameters used for the analysis are presented in the following table:

Soil Type	Unit Weight (pcf)	Angle of Internal	Cohesion (psf)
Clay Fill	120	0	750
Native Clay	110	0	250

As stability will increase with time, long-term stability was not analyzed. Due to the short detention period, less than 24 hours, it is assumed that the embankment soils, of relatively low hydraulic conductivity, will not become saturated and that pore pressure buildup will not

Associated Design Professionals, Inc.
April 30, 1998
Page 2

occur. Therefore, sudden drawdown and steady seepage at flood stage analyses were not required. Analysis was performed for the slopes for end-of-construction conditions, with the pond empty, and for critical flood stage, with the pond full.

The table below indicates the minimum factors of safety determined for the conditions analyzed.

Case	Loading Condition	Minimum Factor of Safety	Criteria (minimum)
I	End of Construction	1.41	1.3
II	Sudden Drawdown	N/A	1.0
III	Critical Flood Stage	1.43	1.4
IV	Steady Seepage at	N/A	1.4
VI	Earthquake (Case I)	N/A	1.0

Based on these results, it is our opinion that the embankment slopes as constructed have adequate factors of safety against deep-seated and surficial failure. We have completed and enclosed the embankment and foundation stability worksheet.

If you have any questions regarding this letter, or if we may be of further service, please contact the undersigned at your convenience.

Sincerely,

KUMAR & ASSOCIATES, INC.

Juan C. Sorensen, P.E.

JCS:fv
Rev. by:BEB
Enclosure

1. Describe analysis submittal based on Code:

UBC (1988) or Other (specify) _____

2. Stability analysis submitted provides for:

Overturning; Sliding; If not, explain _____

3. Loading included in the analyses were:

Lateral earth @ P_A = _____ psf; P_B = _____ psf

Surcharge--Slope @ _____, surface _____ psf

Wind @ P_w = _____ psf

Seepage (Uplift) _____ Earthquake @ P_{eq} = _____ %g

100-year significant wave height _____ ft.

100-year significant wave period _____ sec.

4. Summary of Stability Analysis Results: Factors of Safety. Itemize for each range in site layout dimension and loading condition limitation for each respective reach.

Loading Condition	Criteria (Min)		Sta Overturn	To Sliding	Sta Overturn	To Sliding
	Overtur	Sliding				
Dead & Wind	1.5	1.5	_____	_____	_____	_____
Dead & Soil	1.5	1.5	_____	_____	_____	_____
Dead, Soil, Flood & Impact	1.5	1.5	_____	_____	_____	_____
Dead, Soil & Seismic	1.3	1.3	_____	_____	_____	_____

(Ref: FEMA 114 Sept 1986; COE EM 1110-2-2502)

(Note: Extend table on an added sheet as needed and reference)

5. Foundation bearing strength for each soil type:

<u>Bearing Pressure</u>	<u>Sustained Load</u>	<u>Short Term Load</u>
Computed design maximum	_____ psf	_____ psf
Maximum allowable	_____ psf	_____ psf

6. Foundation scour protection is, is not provided, (describe)

Note: Attach engineering analysis to support construction plans.

SETTLEMENT

1. Anticipated potential settlement has been determined and incorporated into the specified construction elevations to maintain the established freeboard margin. Yes No
2. The computed range of settlement is 0.25 ft. to 0.5 ft.
3. Settlement of the levee crest is determined to be primarily from:
 - Foundation consolidation
 - Embankment compression
 - Other (describe) _____
4. Differential settlement of floodwalls
 - has has not been accommodated in the structural design and construction.

Note: Attach engineering analysis to support construction plans.

INTERIOR DRAINAGE - N/A

1. Specify size of each interior watershed
 - Draining to pressure conduit _____
 - Draining to ponding area _____
2. Relationships Established
 - Ponding elevation vs. storage Yes No
 - Ponding elevation vs. gravity flow Yes No
 - Differential head vs. gravity flow Yes No
3. The river flow duration curve is enclosed Yes No
4. Specify the discharge capacity of the head pressure conduit _____
5. Which Flooding Conditions Were Analyzed?
 - Gravity flow (Interior Watershed) Yes No
 - Common storm (River Watershed) Yes No
 - Historical ponding probability Yes No
 - Coastal wave overtopping Yes No

If no, explain why: _____

6. Interior drainage has been analyzed based on joint probability of interior and exterior flooding and the capacities of pumping and outlet facilities to provide the established level of flood protection. Yes No

If no, explain why: _____

7. The rate of seepage through the levee system for the 100-year flood is _____ cfs

1. The length of levee system used to drive this seepage rate is _____ ft.

2. Will a pumping plant(s) be used for interior drainage? Yes No

If yes, include the number of pumping plants: _____
For each pumping plant, list:

Plant #1

Plant #2

The number of pumps _____

The ponding storage capacity _____

The maximum pumping rate _____

The maximum pumping head _____

The pumping starting elevation _____

The pumping stopping elevation _____

Is the discharge facility protected? _____

Is there a flood warning plan? _____

How much time is available between
warning and flooding? _____

Will the operations be automatic? Yes No

If the pumps are electric, are there backup power sources? Yes No

(Reference: U.S. Army Corps of Engineers EM-1110-2-3101, 3102, 3103, 3104, and 3105)

Note: Include a copy of supporting documentation of data and analysis. Provide a map showing the flooded area and maximum ponding elevations for all interior watersheds that result in flooding.

OTHER DESIGN CRITERIA

1. The following items have been addressed as stated:

Liquifaction is is not a problem.

Hydrocompaction is is not a problem

Heave differential movement due to soils of high shrink/swell is is not a problem.

2. For each of these problems, state the basic facts and corrective action taken.

If the levee/floodwall is new or enlarged, will the structure adversely impact flood levels and/or flow velocities
floodside of the structure?

Yes No

Note: Attach supporting documentation

The planned/installed works are in full compliance with NFIP regulations, Section 44 CFR Ch. 1.65.10

Yes No

OPERATIONAL PLAN AND CRITERIA

1. The operation plan incorporates all the provisions for closure devices as required in Section 65.10 (c) (1), of the NFIP regulations Yes No *N/A*
2. The operation plan incorporates all the provisions for interior drainage as required in Section 65.10 (c) (2), of the NFIP regulations Yes No *N/A*

If no to either of the above, please explain.

PUBLIC BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 0.5 hour per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing and reviewing the form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden, to: Information Collections Management, Federal Emergency Management Agency, 500 C Street, S.W., Washington, DC 20472; and to the Office of Management and Budget, Paperwork Reduction Project (3067-0148), Washington, DC 20503.

Community Name: CANON CITY, COLORADOFlooding Source: NE CANON DRAINAGE AREA (SUB-BASIN FROM NE)Project Name/Identifier: ORCHARD AVENUE LETTER OF MAP REVISION

IDENTIFIER

Name of Dam: _____

Location of dam along flood source (in terms of stream distance or cross section identifier):

APPROXIMATELY 35' UPSTREAM OF SECTION 5 AND 853'
DOWNSTREAM OF SECTION 6

Check one of the following:

Existing dam
 New dam
 Modifications of existing dam (describe modifications) _____

Was the dam designed by _____ Federal agency _____ State agency

Local government agency Private organization?

BACKGROUND

Does the dam have dedicated flood control storage?

 Yes No

Does the project involve revised hydrology?

 Yes No

If yes, complete Hydrologic Analysis Form and include calculations of the 100-year inflow flood hydrograph routed through the dam with the beginning pool at the normal pool elevation (spillway crest elevation for ungated spillway). Include any inflow hydrograph bulking by watershed sediment yield and provide necessary debris and sediment yield analysis.

Does the revised hydrology affect the 100-year water-surface elevation behind the dam or downstream of the dam?

 Yes No

If yes, complete the Riverine Hydraulic Analysis Form and complete the table shown on the following page.

RESULTS

Stillwater Elevation Behind the Dam

	FIS	Revised
10-year	—	5399.74
50-year	—	5402.19
100-year	—	5403.29
500-year	—	—
Normal Pool Elevation	—	N/A

Was long term sediment accumulation taken into consideration in determining the normal pool elevation? Yes No

Was the dam designed to withstand the hydrostatic and hydrodynamic forces associated with floods greater than the 100-year flood? Yes No

If no, and the dam has a reasonable probability of failure during the 100-year flood, please attach dam break analysis.

Provide the following data on the dam:

Dimensional Height: 15 ft

Crest Elevation of top of dam: 5407.00

100-year flood storage capacity: 39.7 Ac. Ft

Freeboard (measured from 100-year water surface elevation): 3.7'

Spillway(s):

Type: gated ungated

Outlet(s):

Type: gated ungated

Dimensional Width: 62.6'

Width: 26'

Dimensional Height: 10.75'

Height 14'-8"

Crest Elevation of top of spillway: 5402.74

Diameter: 42 in.

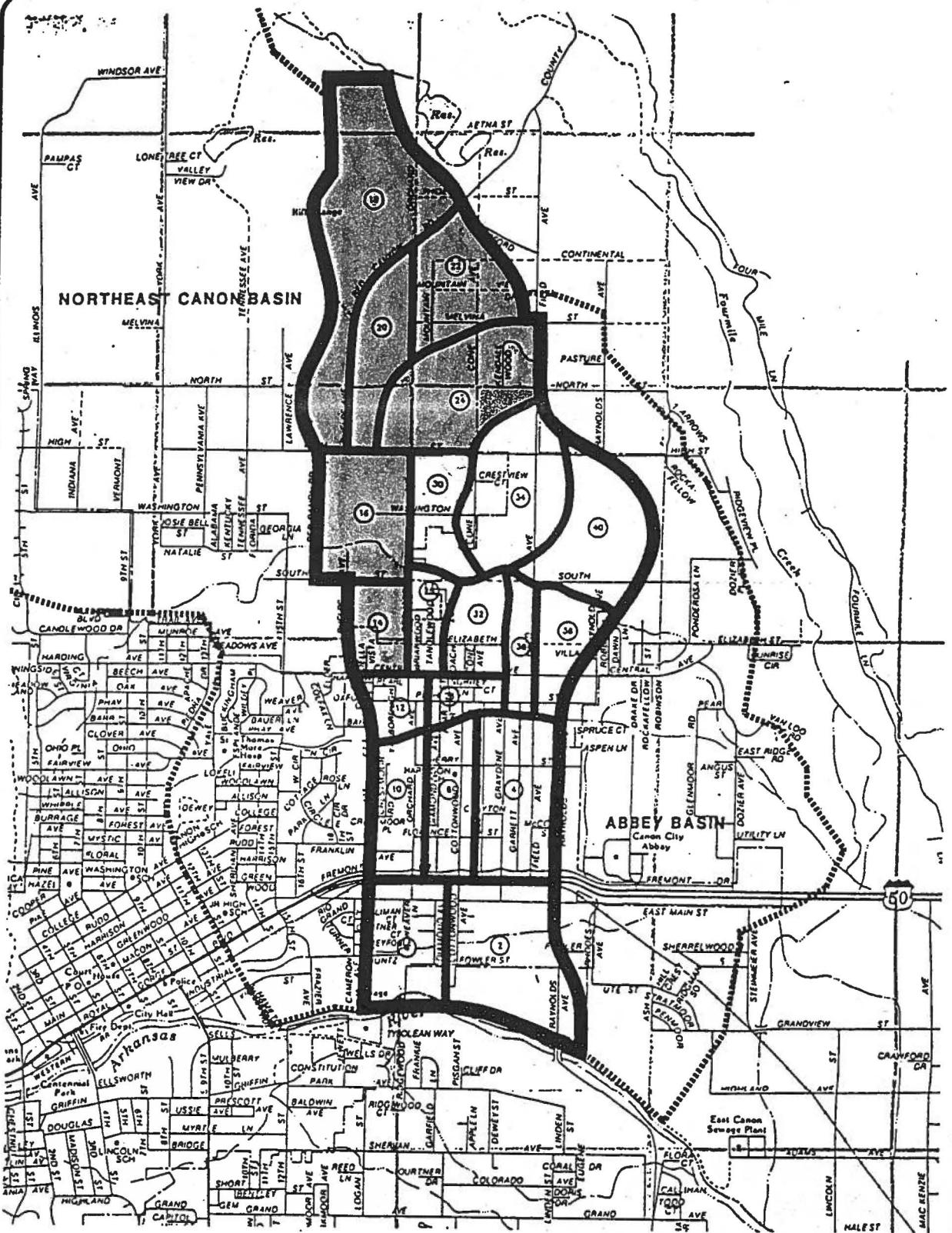
Invert Elevation: 5388.85

Explain flow regulation plan: THE 100 YR FLOW OF 926 cfs IS REDUCED TO 160 cfs BY RETAINING THE FLOW AND RELEASING IT THROUGH A 42" PIPE.

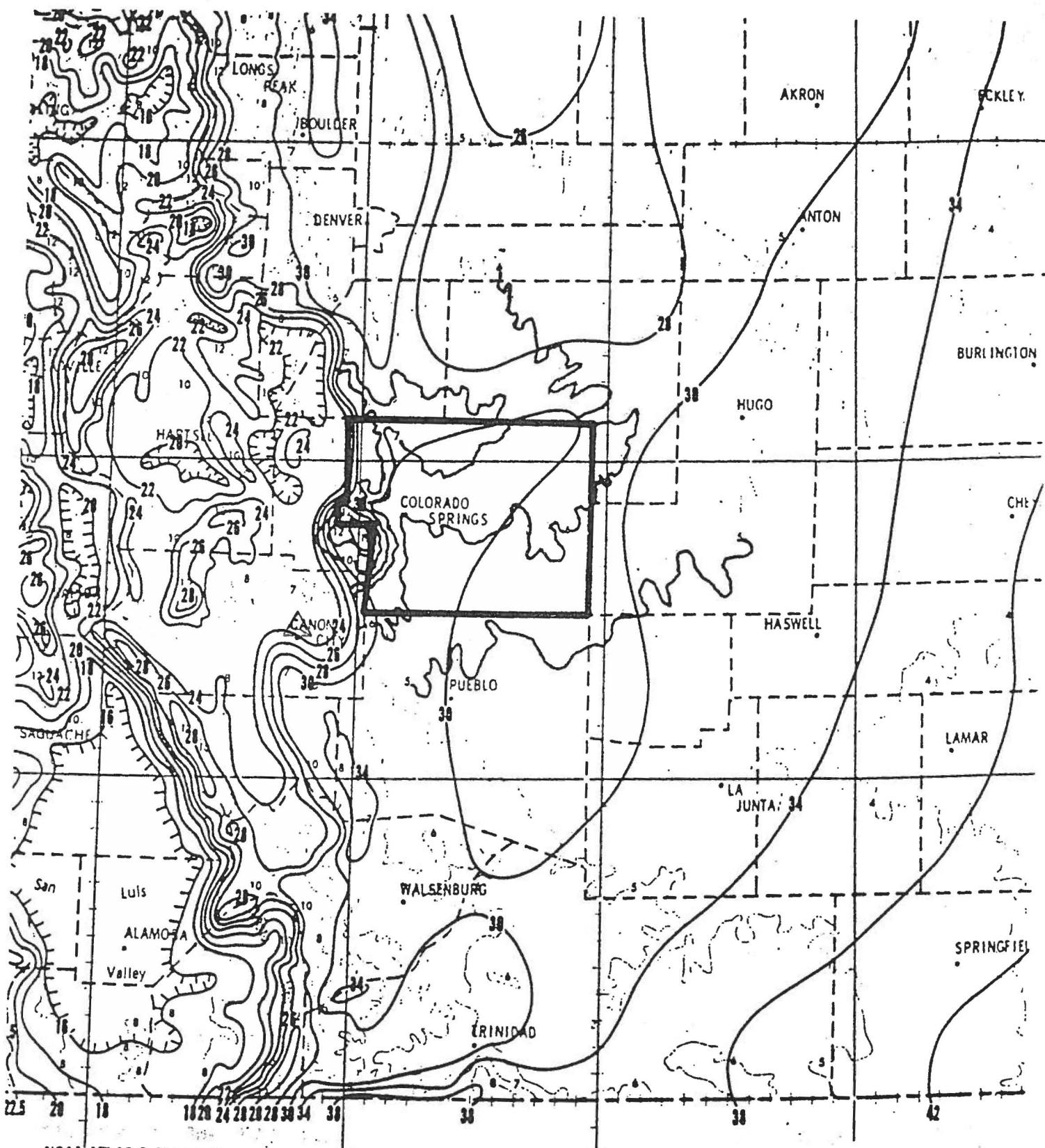
Are the project features, including the emergency spillway, designed to accommodate the 100-year flood discharge without overtopping the dam? Yes No

Was the dam designed in accordance with all currently applicable local, State, and Federal regulations? Yes No

If no, please provide explanation.

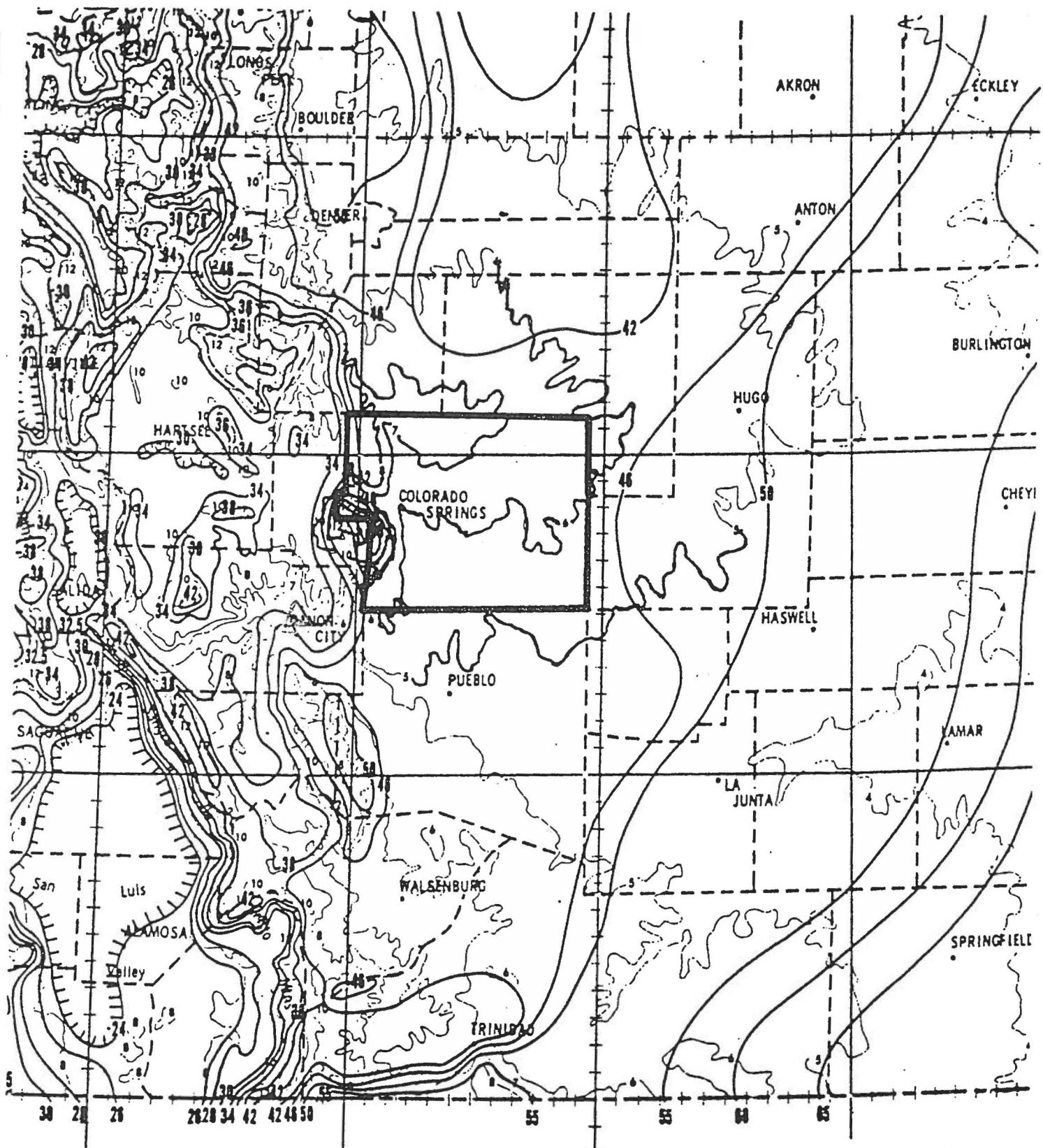

FEMA may request a list of regulations that have been complied with and supporting documentation demonstrating compliance with these regulations.

Attach copy of formal operation and maintenance plan


Answer N/A to any questions which are not applicable

SECTION 2

TR20 Run - Hydrologic Analysis


ORCHARD AVE. DRAINAGE BASIN PLANNING STUDY		PREPARED BY: GRAEF ANHALT SCHLOEMER <i>and ASSOCIATES</i> ENGINEERS & SCIENTISTS
BASIN MAP		
DESIGNED BY: MAB	DRAWN BY: JJW	
CHECKED BY: JRW	DATE: 7/20/94	
FILE NO: 941210		102 E. Pikes Peak Ave, Suite 305 Colorado Springs, CO 80903 (719)634-6902 TEL (719)634-0660 FAX

NOAA ATLAS 2, Volume III

Prepared by U.S. Department of Commerce
 National Oceanic and Atmospheric Administration
 National Weather Service, Office of Hydrology
 Prepared for U.S. Department of Agriculture,
 Soil Conservation Service, Engineering Division

ISOPLUVIALS OF 10-YR 24-HR PRECIPITATION
 IN TENTHS OF AN INCH

NOAA ATLAS 2, Volume III

Prepared by U.S. Department of Commerce
 National Oceanic and Atmospheric Administration
 National Weather Service, Office of Hydrology
 Prepared for U.S. Department of Agriculture,
 Soil Conservation Service, Engineering Division

ISOPLUVIALS OF 100-YR 24-HR PRECIPITATION
 IN TENTHS OF AN INCH

*****80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOGY*****

3 TR-20
FILE 001 CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
TITLE EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET

5 RAINFL 7 0.5
8 0.0000 0.0040 0.0080 0.0100 0.0140
8 0.0190 0.0220 0.0260 0.0300 0.0450
8 0.0600 0.1000 0.7100 0.7500 0.7750
8 0.8000 0.8200 0.8300 0.8400 0.8500
8 0.8600 0.8700 0.8750 0.8850 0.8900
8 0.9000 0.9050 0.9100 0.9200 0.9250
8 0.9300 0.9350 0.9400 0.9450 0.9500
8 0.9550 0.9600 0.9650 0.9700 0.9730
8 0.9750 0.9800 0.9830 0.9870 0.9900
9 0.9930 0.9960 0.9999 1.0000 1.0000

ENDTBL
2 XSECTN 014 1.0
8 5366.0 0.0 0.0
8 5367.8 100.0 16.80
8 5368.5 200.0 28.09
8 5369.7 400.0 55.61
8 5371.0 600.0 93.39
8 5372.6 1500.0 156.94

9 ENDTBL
2 XSECTN 016 1.0
8 5390.0 0.0 0.0
8 5391.6 100.0 22.68
8 5392.2 200.0 37.18
8 5393.5 500.0 72.42
8 5394.9 1000.0 120.73
8 5396.7 2000.0 202.01

9 ENDTBL
2 XSECTN 020 1.0
8 5434.0 0.0 0.0
8 5435.7 100.0 15.96
8 5436.4 200.0 26.67
8 5437.6 500.0 52.79
8 5439.7 1500.0 120.08

9 ENDTBL
3 STRUCT 05
8 5432.0 0.0 0.0
8 5434.0 26.0 0.06
8 5435.0 44.0 0.23
8 5436.0 57.0 0.57
8 5437.0 70.0 1.14
8 5438.0 395.0 2.17

9 ENDTBL
1

*****80-80 LIST OF INPUT DATA (CONTINUED)*****

3 STRUCT 06
8 5434.0 0.0 0.0

8 5436.0 14.0 0.06
8 5437.0 26.0 0.23
8 5438.0 147.0 0.57
8 5439.0 628.0 1.14

ENDTBL

3 STRUCT 07

8 5450.0 0.0 0.0
8 5451.0 6.0 0.03
8 5452.0 13.0 0.09
9 5453.0 131.0 0.35
9 5454.0 345.0 0.70

ENDTBL

3 STRUCT 09

8 5488.0 0.0 0.0
8 5489.0 4.0 0.02
8 5490.0 9.0 0.05
8 5491.0 13.0 0.10
8 5492.0 176.0 0.18
8 5493.0 470.0 0.30

ENDTBL

STRUCT 54

8 5392.0 0.0 0.0
8 5393.0 3.4 0.05
8 5394.0 9.0 0.10
8 5395.0 13.0 0.30
8 5396.0 16.0 2.80
8 5397.0 78.0 5.80
8 5398.0 90.0 9.30
8 5399.0 103.0 13.30
8 5400.0 112.0 17.70
8 5402.0 132.0 29.50
8 5403.0 140.0 37.30
8 5404.0 210.0 45.70
8 5406.0 474.0 64.00
8 5407.0 655.0 73.70

ENDTBL

6 RUNOFF 1 024 6 0.222 83.1 0.449 1
6 RESVOR 2 07 6 4 5450.0 1
6 REACH 3 016 4 5 2900.0
6 RUNOFF 1 022 7 0.121 81.0 0.337 1
6 RESVOR 2 09 7 4 5488.0 1
6 REACH 3 020 4 6 2700.0
6 RUNOFF 1 020 4 0.127 80.0 0.513 1
6 ADDHYD 4 020 4 6 7 1

*****80-80 LIST OF INPUT DATA (CONTINUED)*****

6 RESVOR 2 06 7 2 5434.0 1
6 RUNOFF 1 018 4 0.427 77.2 0.611 1
6 RESVOR 2 05 4 7 5432.0 1
6 REACH 3 016 7 6 2900.0 1
6 ADDHYD 4 016 5 6 4 1
6 RUNOFF 1 016 5 0.188 81.7 0.548 1
6 ADDHYD 4 016 5 2 6 1
6 ADDHYD 4 016 6 4 5 1 1 1
6 RESVOR 2 54 5 6 5392.0 1 1 1
6 REACH 3 014 6 7 2300.0 1

RUNOFF 1 014 5 0.092 87.5 0.336 1
6 ADDHYD 4 014 7 5 6 1 1 1

ENDATA

INCREM 6 0.10

COMPUT 7 024 014 0.0 3.40 1.0 7 2 01 01

ENDCMP 1

INCREM 6 0.10

COMPUT 7 024 014 0.0 3.05 1.0 7 2 01 02

ENDCMP 1

INCREM 6 0.10

COMPUT 7 024 014 0.0 2.40 1.0 7 2 01 03

ENDCMP 1

ENDJOB 2

*****END OF 80-80 LIST*****

ECUTIVE CONTROL OPERATION INCREM

RECORD ID

MAIN TIME INCREMENT = .10 HOURS

ECUTIVE CONTROL OPERATION COMPUT

RECORD ID

FROM XSECTION 24

TO XSECTION 14

STARTING TIME = .00 RAIN DEPTH = 3.40 RAIN DURATION= 1.00 RAIN TABLE NO.= 7 ANT. MOIST. COND= 2
ALTERNATE NO.= 1 STORM NO.= 1 MAIN TIME INCREMENT = .10 HOURS

OPERATION RUNOFF CROSS SECTION 24

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.13	274.90	(RUNOFF)
10.39	7.79	(RUNOFF)
11.57	7.28	(RUNOFF)
12.57	7.30	(RUNOFF)
14.07	7.32	(RUNOFF)
18.87	4.03	(RUNOFF)
20.59	3.71	(RUNOFF)
23.50	3.02	(RUNOFF)

OPERATION RESVOR STRUCTURE 7

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.16	271.90	5453.66
10.45	7.79	5451.26
11.65	7.05	5451.15
12.66	7.08	5451.15
14.16	7.09	5451.16
18.90	4.03	5450.67
23.56	3.00	5450.50

*** WARNING REACH 16 ATT-KIN COEFF.(C) GREATER THAN 0.667, CONSIDER REDUCING MAIN TIME INCREMENT ***

OPERATION RUNOFF CROSS SECTION 22

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.08	156.29	(RUNOFF)
7.46	9.76	(RUNOFF)
10.40	4.04	(RUNOFF)

11.52	3.92	(RUNOFF)
12.51	3.94	(RUNOFF)
14.01	3.97	(RUNOFF)
18.90	2.10	(RUNOFF)
23.47	1.64	(RUNOFF)

TR20 XEQ 03-30-98 07:42 CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
 REV PC 09/83(.2) EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET

JOB 1 PASS 1
 PAGE 1

OPERATION RESVOR STRUCTURE 9

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.09	159.97	5491.90
10.45	4.05	5489.01
11.57	3.89	5488.97
12.57	3.90	5488.98
14.07	3.93	5488.98
18.95	2.11	5488.53
23.51	1.61	5488.40

*** WARNING REACH 20 ATT-KIN COEFF.(C) GREATER THAN 0.667, CONSIDER REDUCING MAIN TIME INCREMENT ***

OPERATION RUNOFF CROSS SECTION 20

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.18	122.98	(RUNOFF)
10.40	4.13	(RUNOFF)
11.60	3.77	(RUNOFF)
12.60	3.80	(RUNOFF)
14.10	3.80	(RUNOFF)
18.89	2.16	(RUNOFF)
23.53	1.60	(RUNOFF)

OPERATION ADDHYD CROSS SECTION 20

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.20	273.60	5436.69
10.44	8.17	5434.14
11.65	7.56	5434.13
12.65	7.59	5434.13
14.15	7.62	5434.13
18.93	4.26	5434.07
20.67	3.88	5434.07
23.57	3.18	5434.05

OPERATION RESVOR STRUCTURE 6

TR20 XEQ 03-30-98 07:42 CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM

JOB 1 PASS 1

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.21	266.23	5438.25
10.46	8.17	5435.17
11.70	7.48	5435.07
12.70	7.52	5435.07
14.20	7.55	5435.08
18.95	4.26	5434.61
20.73	3.85	5434.55
23.61	3.14	5434.45

OPERATION RUNOFF CROSS SECTION 18

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.24	315.71	(RUNOFF)
10.45	12.89	(RUNOFF)
11.65	11.40	(RUNOFF)
12.65	11.47	(RUNOFF)
14.15	11.46	(RUNOFF)
18.89	6.80	(RUNOFF)
20.69	5.86	(RUNOFF)
21.64	5.18	(RUNOFF)
23.56	4.92	(RUNOFF)

*** WARNING - STRUCTURE 5 DELTA T IS TOO LARGE. 0 /2 > S /DELTA T OCCURED 3 TIMES STARTING WITH POINT256

OPERATION RESVOR STRUCTURE 5

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.28	310.42	5437.74
10.46	12.88	5432.99
11.68	11.38	5432.88
12.68	11.44	5432.88
14.19	11.44	5432.88
18.92	6.79	5432.52
20.72	5.85	5432.45
21.67	5.17	5432.40
23.58	4.90	5432.38

*** WARNING REACH 16 ATT-KIN COEFF.(C) GREATER THAN 0.667, CONSIDER REDUCING MAIN TIME INCREMENT ***

OPERATION REACH CROSS SECTION 16

TR20 XEQ 03-30-98 07:42 CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
REV PC 09/83(.2) EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET

JOB 1 PASS 1
PAGE 3

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.43	294.16	5392.61
10.57	12.87	5390.21

11.81	11.21	5390.18
12.82	11.27	5390.18
14.32	11.25	5390.18
19.05	6.79	5390.11
20.86	5.74	5390.09
23.70	4.84	5390.08

OPERATION ADDHYD CROSS SECTION 16

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.37	522.85	5393.56
10.56	20.66	5390.33
11.80	18.14	5390.29
12.81	18.22	5390.29
14.31	18.20	5390.29
19.03	10.82	5390.17
20.84	9.30	5390.15
21.78	8.21	5390.13
23.69	7.79	5390.12

OPERATION RUNOFF CROSS SECTION 16

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.20	192.79	(RUNOFF)
10.40	6.38	(RUNOFF)
11.62	5.75	(RUNOFF)
12.62	5.78	(RUNOFF)
14.12	5.78	(RUNOFF)
18.95	3.32	(RUNOFF)
23.55	2.43	(RUNOFF)

OPERATION ADDHYD CROSS SECTION 16

TR20 XEQ 03-30-98 07:42 CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
 REV PC 09/83(.2) EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET

JOB 1 PASS 1
 PAGE 4

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.21	458.66	5393.32
10.44	14.55	5390.23
11.66	13.16	5390.21
12.66	13.24	5390.21
14.17	13.25	5390.21
18.95	7.59	5390.12
20.70	6.74	5390.11
21.66	5.81	5390.09
23.57	5.57	5390.09

OPERATION ADDHYD CROSS SECTION 16

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.30	926.33	5394.69

10.47	35.19	5390.56
11.74	30.84	5390.49
12.74	30.98	5390.50
14.25	30.94	5390.50
18.96	18.41	5390.29
20.78	15.82	5390.25
21.72	13.95	5390.22
23.63	13.19	5390.21

TIME(HRS)	FIRST HYDROGRAPH POINT =	.00 HOURS		TIME INCREMENT = .10 HOURS			DRAINAGE AREA =	1.09 SQ.MI.			
5.00	DISCHG	.00	.00	.00	.00	.04	1.50	12.63	57.29	168.52	
6.00	DISCHG	396.29	631.63	845.32	926.13	828.35	675.51	521.60	392.76	295.74	227.82
7.00	DISCHG	179.88	152.16	138.37	128.58	120.85	113.75	107.04	101.20	93.66	86.87
8.00	DISCHG	81.50	77.22	73.26	68.61	62.01	54.93	48.25	43.75	40.58	38.47
9.00	DISCHG	37.12	36.27	35.73	35.40	35.20	35.09	35.03	35.00	35.00	35.02
10.00	DISCHG	35.04	35.06	35.10	35.13	35.16	35.18	35.07	34.46	32.91	30.35
11.00	DISCHG	27.30	24.41	22.82	22.94	24.66	27.20	29.45	30.74	30.54	28.87
12.00	DISCHG	26.37	23.90	22.54	22.85	24.67	27.29	29.57	30.87	30.70	29.05
13.00	DISCHG	26.53	23.89	21.86	20.46	19.57	19.01	18.81	19.26	20.79	23.45
14.00	DISCHG	26.60	29.24	30.76	30.72	29.14	26.67	24.02	22.00	20.62	19.72
15.00	DISCHG	19.15	18.79	18.56	18.41	18.32	18.27	18.23	18.21	18.20	18.20
16.00	DISCHG	18.20	18.20	18.21	18.21	18.22	18.23	18.24	18.24	18.25	18.26
17.00	DISCHG	18.26	18.27	18.28	18.29	18.29	18.30	18.31	18.31	18.32	18.33
18.00	DISCHG	18.34	18.34	18.35	18.36	18.36	18.37	18.38	18.38	18.39	18.40
19.00	DISCHG	18.40	18.34	18.08	17.39	16.27	14.95	13.72	12.67	11.70	10.73
20.00	DISCHG	9.81	9.13	8.99	9.63	11.07	12.90	14.55	15.57	15.80	15.27
21.00	DISCHG	14.33	13.41	12.78	12.60	12.82	13.27	13.70	13.94	13.85	13.45
22.00	DISCHG	12.90	12.36	11.95	11.66	11.48	11.36	11.28	11.24	11.21	11.19
23.00	DISCHG	11.18	11.20	11.33	11.64	12.15	12.74	13.17	13.04	12.02	10.06
24.00	DISCHG	7.64	5.41	3.69	2.47	1.64	1.08	.70	.45	.28	.18
25.00	DISCHG	.10	.06	.04	.02	.01	.00				

TR20 XEQ C
REV F

CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET

JOB 1 PASS 1
PAGE 5

RUNOFF VOLUME ABOVE BASEFLOW = 1.56 WATERSHED INCHES, 1089.83 CFS-HRS, 90.06 ACRE-FEET; BASEFLOW = .00 CFS

OPERATION RESVOR STRUCTURE 54

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
7.08	160.19	5403.29
14.36	29.80	5396.22
19.05	18.37	5396.04
20.82	15.58	5395.86

TIME(HRS)	FIRST HYDROGRAPH POINT	= .00 HOURS		TIME INCREMENT = .10 HOURS			DRAINAGE AREA	= 1.09 SQ.MI.			
5.00	DISCHG	.00	.00	.00	.00	.01	.34	3.29	12.45	13.96	
6.00	DISCHG	25.64	82.35	100.13	113.95	124.57	132.79	136.72	139.42	149.09	156.59
7.00	DISCHG	159.74	160.16	159.17	157.46	155.28	152.75	149.93	146.88	143.59	140.04
8.00	DISCHG	139.53	139.03	138.49	137.92	137.30	136.64	135.92	135.16	134.38	133.58
9.00	DISCHG	132.77	131.93	130.59	129.27	127.97	126.67	125.40	124.14	122.90	121.68
10.00	DISCHG	120.47	119.29	118.11	116.96	115.82	114.70	113.59	112.50	111.28	109.94
11.00	DISCHG	108.58	107.20	105.79	104.40	103.05	101.04	99.11	97.28	95.52	93.77
12.00	DISCHG	92.02	90.25	88.39	86.55	84.80	83.16	81.63	80.19	78.81	74.86

3.00	DISCHG	67.45	60.81	54.84	49.54	44.89	40.86	37.41	34.52	32.24	30.65
14.00	DISCHG	29.76	29.47	29.55	29.74	29.77	29.48	28.83	27.91	26.87	25.82
15.00	DISCHG	24.81	23.89	23.07	22.35	21.72	21.18	20.72	20.33	19.99	19.71
6.00	DISCHG	19.47	19.27	19.11	18.96	18.85	18.75	18.67	18.60	18.54	18.50
7.00	DISCHG	18.46	18.43	18.41	18.39	18.37	18.36	18.35	18.34	18.34	18.34
18.00	DISCHG	18.34	18.34	18.34	18.34	18.34	18.35	18.35	18.36	18.36	18.37
9.00	DISCHG	18.37	18.37	18.35	18.25	18.03	17.65	17.13	16.51	15.99	15.94
0.00	DISCHG	15.89	15.82	15.76	15.69	15.64	15.60	15.59	15.58	15.58	15.58
21.00	DISCHG	15.57	15.56	15.53	15.50	15.48	15.45	15.43	15.42	15.40	15.38
22.00	DISCHG	15.36	15.34	15.30	15.27	15.23	15.20	15.16	15.12	15.08	15.04
3.00	DISCHG	15.00	14.97	14.93	14.90	14.87	14.84	14.82	14.81	14.78	14.75
24.00	DISCHG	14.69	14.61	14.51	14.40	14.27	14.15	14.02	13.88	13.75	13.62
25.00	DISCHG	13.48	13.35	13.22	13.09	12.40	10.51	8.60	3.23	1.81	1.02
6.00	DISCHG	.57	.32	.18	.10	.06	.03	.02	.01	.01	.00

RUNOFF VOLUME ABOVE BASEFLOW = 1.56 WATERSHED INCHES, 1090.54 CFS-HRS, 90.12 ACRE-FEET; BASEFLOW = .00 CFS

*** WARNING REACH 14 ATT-KIN COEFF.(C) GREATER THAN 0.667, CONSIDER REDUCING MAIN TIME INCREMENT ***

OPERATION REACH CROSS SECTION 14

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
7.21	159.96	5368.22
14.47	29.77	5366.54
19.15	18.37	5366.33

20 XEQ 03-30-98 07:42 CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
REV PC 09/83(.2) EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET

JOB 1 PASS 1
PAGE 6

OPERATION RUNOFF CROSS SECTION 14

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.07	160.16	(RUNOFF)
10.38	3.54	(RUNOFF)
11.51	3.42	(RUNOFF)
12.51	3.43	(RUNOFF)
14.01	3.44	(RUNOFF)
18.88	1.81	(RUNOFF)
23.47	1.39	(RUNOFF)

OPERATION ADDHYD CROSS SECTION 14

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.18	191.83	5368.44
7.21	168.67	5368.28
18.96	20.18	5366.36
23.42	16.27	5366.29

TIME(HRS)	FIRST HYDROGRAPH POINT =	.00 HOURS	TIME INCREMENT =	.10 HOURS	DRAINAGE AREA =	1.18 SQ.MI.
5.00	DISCHG	.00	.00	.02	.21	4.78
6.00	DISCHG	162.83	181.21	190.89	164.77	150.87
7.00	DISCHG	164.15	167.74	168.67	167.98	166.44

8.00	DISCHG	147.85	146.48	144.88	143.28	142.10	141.20	140.40	139.63	138.85	138.06
9.00	DISCHG	137.26	136.45	135.62	134.37	133.06	131.76	130.46	129.19	127.93	126.69
10.00	DISCHG	125.46	124.25	123.06	121.89	120.74	119.59	118.31	116.71	115.08	113.58
1.00	DISCHG	112.12	110.86	109.94	109.05	107.96	106.74	104.77	102.38	100.02	97.94
12.00	DISCHG	96.05	94.37	93.08	91.75	90.22	88.59	86.85	84.82	82.85	81.15
13.00	DISCHG	77.50	70.68	63.98	57.88	52.44	47.66	43.67	40.59	38.12	36.02
14.00	DISCHG	34.43	33.32	32.44	31.93	31.78	31.69	31.38	30.77	29.89	28.88
15.00	DISCHG	27.83	26.81	25.88	25.04	24.30	23.65	23.09	22.62	22.21	21.86
16.00	DISCHG	21.57	21.32	21.11	20.94	20.79	20.67	20.57	20.48	20.41	20.36
17.00	DISCHG	20.31	20.27	20.24	20.21	20.19	20.18	20.16	20.16	20.15	20.14
18.00	DISCHG	20.14	20.14	20.14	20.14	20.14	20.15	20.15	20.16	20.16	20.17
19.00	DISCHG	20.17	20.11	19.91	19.67	19.46	19.21	18.80	18.19	17.48	16.88
20.00	DISCHG	16.72	16.74	16.97	17.22	17.34	17.38	17.32	17.11	16.90	16.78
21.00	DISCHG	16.72	16.72	16.79	16.87	16.90	16.90	16.86	16.75	16.63	16.55
22.00	DISCHG	16.50	16.47	16.43	16.40	16.37	16.33	16.29	16.25	16.22	16.18
23.00	DISCHG	16.14	16.13	16.18	16.25	16.27	16.26	16.13	15.73	15.30	15.04
24.00	DISCHG	14.90	14.78	14.67	14.55	14.43	14.30	14.17	14.04	13.91	13.78
25.00	DISCHG	13.64	13.51	13.38	13.25	13.12	12.52	10.85	8.98	4.21	2.22
26.00	DISCHG	1.22	.68	.38	.21	.12	.07	.04	.02	.01	.01
27.00	DISCHG		.00								

RUNOFF VOLUME ABOVE BASEFLOW = 1.60 WATERSHED INCHES, 1216.61 CFS-HRS, 100.54 ACRE-FEET; BASEFLOW = .00 CFS

TR20 XEQ 03-30-98 07:42 CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
REV PC 09/83(.2) EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET JOB 1 PASS 2
PAGE 7

EXECUTIVE CONTROL OPERATION ENDCMP RECORD ID
COMPUTATIONS COMPLETED FOR PASS 1

EXECUTIVE CONTROL OPERATION INCREM RECORD ID
MAIN TIME INCREMENT = .10 HOURS

EXECUTIVE CONTROL OPERATION COMPUT RECORD ID
FROM XSECTION 24
TO XSECTION 14
STARTING TIME = .00 RAIN DEPTH = 3.05 RAIN DURATION= 1.00 RAIN TABLE NO.= 7 ANT. MOIST. COND= 2
ALTERNATE NO.= 1 STORM NO.= 2 MAIN TIME INCREMENT = .10 HOURS

OPERATION RUNOFF CROSS SECTION 24

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.14	227.85	(RUNOFF)
10.40	6.73	(RUNOFF)
11.57	6.30	(RUNOFF)
12.57	6.32	(RUNOFF)
14.07	6.35	(RUNOFF)
18.87	3.50	(RUNOFF)
23.50	2.63	(RUNOFF)

OPERATION RESVOR STRUCTURE 7

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.16	225.39	5453.44
10.45	6.74	5451.10
11.64	6.16	5451.02
12.64	6.18	5451.03
14.14	6.20	5451.03
18.90	3.50	5450.58
23.56	2.61	5450.44

OPERATION RUNOFF CROSS SECTION 22

TR20 XEQ 03-30-98 07:42
REV PC 09/83(.2)CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDETJOB 1 PASS 2
PAGE 8

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.09	128.76	(RUNOFF)
7.46	8.33	(RUNOFF)
10.41	3.47	(RUNOFF)
11.52	3.37	(RUNOFF)
12.51	3.39	(RUNOFF)
14.01	3.42	(RUNOFF)
18.90	1.82	(RUNOFF)
23.47	1.41	(RUNOFF)

OPERATION RESVOR STRUCTURE 9

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.10	134.70	5491.75
10.45	3.48	5488.87
11.57	3.34	5488.83
12.57	3.36	5488.84
14.07	3.38	5488.85
18.95	1.82	5488.46
23.51	1.39	5488.35

*** WARNING REACH 20 ATT-KIN COEFF.(C) GREATER THAN 0.667, CONSIDER REDUCING MAIN TIME INCREMENT ***

OPERATION RUNOFF CROSS SECTION 20

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.19	100.03	(RUNOFF)
10.41	3.53	(RUNOFF)
11.60	3.23	(RUNOFF)
12.60	3.25	(RUNOFF)
14.10	3.26	(RUNOFF)
23.53	1.37	(RUNOFF)

OPERATION ADDHYD CROSS SECTION 20

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.21	224.54	5436.50
10.45	7.00	5434.12
11.65	6.47	5434.11
12.65	6.50	5434.11
14.15	6.54	5434.11
18.94	3.67	5434.06
23.57	2.74	5434.05

120 XEQ 03-30-98 07:42 CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
REV PC 09/83(.2) EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHEDET

JOB 1 PASS 2
PAGE 9

OPERATION RESVOR STRUCTURE 6

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.22	221.90	5438.16
10.46	7.00	5435.00
11.70	6.41	5434.92
12.70	6.45	5434.92
14.20	6.48	5434.93
18.96	3.68	5434.52
23.61	2.71	5434.39

OPERATION RUNOFF CROSS SECTION 18

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.25	251.34	(RUNOFF)
10.45	10.91	(RUNOFF)
11.65	9.66	(RUNOFF)
12.65	9.73	(RUNOFF)
14.15	9.74	(RUNOFF)
18.90	5.79	(RUNOFF)
20.69	5.00	(RUNOFF)
23.56	4.20	(RUNOFF)

*** WARNING - STRUCTURE 5 DELTA T IS TOO LARGE. 0 /2 > S /DELTA T OCCURED 3 TIMES STARTING WITH POINT256

OPERATION RESVOR STRUCTURE 5

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.28	247.00	5437.54
10.46	10.90	5432.84
11.68	9.65	5432.74
12.68	9.71	5432.75
14.19	9.72	5432.75
18.93	5.79	5432.45
20.72	4.99	5432.38
23.58	4.19	5432.32

OPERATION REACH CROSS SECTION 16

TR20 XEQ 03-30-98 07:42
REV PC 09/83(.2)

CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET

JOB 1 PASS 2
PAGE 10

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.45	230.74	5392.33
10.57	10.89	5390.17
11.82	9.48	5390.15
12.82	9.54	5390.15
14.33	9.53	5390.15
19.05	5.79	5390.09
23.71	4.13	5390.07

OPERATION ADDHYD CROSS SECTION 16

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.38	416.86	5393.14
10.57	17.62	5390.28
11.80	15.52	5390.25
12.80	15.60	5390.25
14.31	15.59	5390.25
19.05	9.30	5390.15
20.84	7.97	5390.13
21.79	7.05	5390.11
23.69	6.69	5390.11

OPERATION RUNOFF CROSS SECTION 16

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.20	158.30	(RUNOFF)
10.41	5.49	(RUNOFF)
11.62	4.95	(RUNOFF)
12.62	4.98	(RUNOFF)
14.12	4.99	(RUNOFF)
18.95	2.87	(RUNOFF)
23.55	2.10	(RUNOFF)

OPERATION ADDHYD CROSS SECTION 16

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.21	379.78	5392.98
10.45	12.50	5390.20
11.66	11.30	5390.18
12.66	11.38	5390.18
14.17	11.40	5390.18
18.95	6.55	5390.10
20.70	5.81	5390.09
21.66	5.02	5390.08
23.58	4.81	5390.08

TR20 XEQ 03-30-98 07:42
REV PC 09/83(.2)

CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET

JOB 1 PASS 2
PAGE 11

OPERATION ADDHYD CROSS SECTION 16

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.31	740.69	5394.17
10.47	30.09	5390.48
11.73	26.45	5390.42
12.74	26.58	5390.43
14.25	26.57	5390.43
18.96	15.84	5390.25
20.78	13.59	5390.22
21.72	12.00	5390.19
23.63	11.35	5390.18

TIME(HRS)	FIRST HYDROGRAPH POINT = .00 HOURS			TIME INCREMENT = .10 HOURS			DRAINAGE AREA =	1.09 SQ.MI.			
5.00	DISCHG	.00	.00	.00	.01	.84	8.13	40.85	114.95		
6.00	DISCHG	300.66	494.51	651.71	740.26	674.78	560.87	432.00	328.24	248.22	192.81
7.00	DISCHG	156.59	138.49	125.91	116.13	107.06	98.95	90.58	82.58	76.76	72.27
8.00	DISCHG	68.25	64.40	61.36	57.30	51.88	46.42	41.43	37.51	34.75	32.91
9.00	DISCHG	31.73	30.99	30.52	30.24	30.07	29.97	29.92	29.90	29.90	29.92
10.00	DISCHG	29.94	29.97	30.00	30.03	30.06	30.09	30.00	29.47	28.16	25.98
11.00	DISCHG	23.24	20.88	19.56	19.66	21.10	23.26	25.27	26.37	26.17	24.69
12.00	DISCHG	22.48	20.47	19.35	19.60	21.13	23.36	25.40	26.50	26.33	24.86
13.00	DISCHG	22.62	20.47	18.78	17.59	16.82	16.33	16.15	16.53	17.82	20.07
14.00	DISCHG	22.76	25.13	26.42	26.37	24.98	22.77	20.62	18.92	17.74	16.97
15.00	DISCHG	16.47	16.15	15.95	15.82	15.74	15.69	15.66	15.64	15.63	15.63
16.00	DISCHG	15.63	15.64	15.64	15.65	15.66	15.66	15.67	15.68	15.68	15.69
17.00	DISCHG	15.70	15.70	15.71	15.72	15.73	15.73	15.74	15.75	15.75	15.76
18.00	DISCHG	15.77	15.77	15.78	15.79	15.79	15.80	15.81	15.81	15.82	15.83
19.00	DISCHG	15.83	15.79	15.56	14.97	14.02	12.89	11.84	10.94	10.10	9.26
20.00	DISCHG	8.47	7.89	7.76	8.30	9.51	11.07	12.48	13.37	13.58	13.14
21.00	DISCHG	12.35	11.57	11.03	10.87	11.05	11.42	11.79	11.99	11.92	11.59
22.00	DISCHG	11.12	10.67	10.31	10.06	9.89	9.79	9.72	9.68	9.66	9.64
23.00	DISCHG	9.63	9.65	9.76	10.02	10.46	10.96	11.33	11.23	10.36	8.70
24.00	DISCHG	6.64	4.73	3.24	2.18	1.45	.96	.62	.40	.25	.15
25.00	DISCHG	.09	.05	.03	.02	.01	.00				

RUNOFF VOLUME ABOVE BASEFLOW = 1.29 WATERSHED INCHES, 902.12 CFS-HRS, 74.55 ACRE-FEET; BASEFLOW = .00 CFS

OPERATION RESVOR STRUCTURE 54

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
7.14	133.56	5402.19
14.49	23.13	5396.11

TIME(HRS)	FIRST HYDROGRAPH POINT = .00 HOURS			TIME INCREMENT = .10 HOURS			DRAINAGE AREA =	1.09 SQ.MI.	
5.00	DISCHG	.00	.00	.00	.00	.19	2.07	10.61	13.51

TR20 XEQ 03-30-98 07:42
REV PC 09/83(.2)

CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET

JOB 1 PASS 2
PAGE 12

6.00	DISCHG	15.43	67.00	90.18	105.05	114.61	121.61	126.82	130.35	132.33	133.07
7.00	DISCHG	133.42	133.54	133.53	133.43	133.24	132.99	132.66	132.28	131.72	130.93
8.00	DISCHG	130.08	129.20	128.27	127.32	126.30	125.23	124.10	122.92	121.71	120.49
9.00	DISCHG	119.27	118.04	116.83	115.63	114.44	113.26	112.10	110.75	109.39	108.06
0.00	DISCHG	106.75	105.46	104.20	102.93	101.00	99.12	97.29	95.50	93.73	91.96
1.00	DISCHG	90.18	88.28	86.38	84.52	82.72	81.03	79.45	77.71	69.61	62.66
12.00	DISCHG	56.51	51.00	46.11	41.92	38.52	35.96	34.14	32.85	31.84	30.86
3.00	DISCHG	29.74	28.45	27.06	25.66	24.33	23.11	22.03	21.13	20.51	20.26
4.00	DISCHG	20.45	21.00	21.75	22.48	22.98	23.12	22.90	22.41	21.76	21.07
15.00	DISCHG	20.39	19.74	19.16	18.65	18.19	17.80	17.47	17.18	16.94	16.73
16.00	DISCHG	16.56	16.42	16.29	16.19	16.11	16.04	16.00	16.00	15.99	15.99
7.00	DISCHG	15.99	15.98	15.98	15.98	15.98	15.97	15.97	15.97	15.97	15.96
18.00	DISCHG	15.96	15.96	15.96	15.96	15.96	15.95	15.95	15.95	15.95	15.95
19.00	DISCHG	15.95	15.95	15.94	15.94	15.92	15.90	15.86	15.82	15.77	15.71
0.00	DISCHG	15.64	15.57	15.49	15.42	15.35	15.30	15.27	15.24	15.23	15.21
1.00	DISCHG	15.18	15.15	15.11	15.07	15.03	14.99	14.96	14.93	14.90	14.87
22.00	DISCHG	14.84	14.80	14.75	14.71	14.66	14.61	14.57	14.52	14.47	14.42
3.00	DISCHG	14.38	14.33	14.28	14.24	14.20	14.17	14.14	14.11	14.08	14.03
4.00	DISCHG	13.97	13.89	13.79	13.68	13.56	13.44	13.32	13.19	13.06	11.99
25.00	DISCHG	10.18	7.50	2.97	1.68	.95	.54	.30	.17	.09	.05
26.00	DISCHG	.03	.02	.01	.01						

RUNOFF VOLUME ABOVE BASEFLOW = 1.29 WATERSHED INCHES, 902.50 CFS-HRS, 74.58 ACRE-FEET; BASEFLOW = .00 CFS

*** WARNING REACH 14 ATT-KIN COEFF.(C) GREATER THAN 0.667, CONSIDER REDUCING MAIN TIME INCREMENT ***

OPERATION REACH CROSS SECTION 14

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
7.28	133.53	5368.03
14.61	23.07	5366.42

OPERATION RUNOFF CROSS SECTION 14

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.07	136.48	(RUNOFF)
10.38	3.10	(RUNOFF)
11.51	2.99	(RUNOFF)
12.51	3.01	(RUNOFF)
14.01	3.02	(RUNOFF)
23.47	1.23	(RUNOFF)

OPERATION ADDHYD CROSS SECTION 14

TR20 XEQ 03-30-98 07:42 CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
REV PC 09/83(.2) EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET

JOB 1 PASS 2
PAGE 13

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.19	158.96	5368.21
7.25	141.12	5368.09

14.60	24.70	5366.44
23.37	15.45	5366.28

ME(HRS)	FIRST HYDROGRAPH POINT =			TIME INCREMENT =			DRAINAGE AREA =		1.18 SQ.MI.		
	DISCHG	.00	.00	.00	.00	.04	3.11	22.27	59.14	104.19	
5.00	DISCHG	138.75	149.59	158.77	143.48	135.51	134.81	136.60	138.28	139.51	140.42
6.00	DISCHG	140.78	140.99	141.11	141.11	141.02	140.85	140.49	139.77	138.96	138.18
7.00	DISCHG	137.31	136.17	134.42	132.58	131.10	129.84	128.66	127.49	126.30	125.08
8.00	DISCHG	123.86	122.63	121.41	120.20	119.00	117.81	116.63	115.47	114.15	112.81
9.00	DISCHG	111.47	110.16	108.87	107.60	106.33	104.52	102.52	100.25	97.99	95.95
10.00	DISCHG	94.06	92.35	90.88	89.44	87.83	86.15	84.37	82.35	80.18	73.05
11.00	DISCHG	66.00	59.76	54.51	49.93	45.84	42.39	39.56	37.14	35.26	33.90
12.00	DISCHG	32.78	31.62	30.34	28.96	27.57	26.23	25.12	24.44	23.98	23.56
13.00	DISCHG	23.36	23.37	23.42	23.67	24.13	24.54	24.70	24.53	24.09	23.49
14.00	DISCHG	22.81	22.12	21.47	20.88	20.35	19.88	19.48	19.13	18.83	18.58
15.00	DISCHG	18.36	18.18	18.03	17.90	17.80	17.71	17.63	17.59	17.58	17.57
16.00	DISCHG	17.57	17.57	17.57	17.56	17.56	17.56	17.56	17.55	17.55	17.55
17.00	DISCHG	17.55	17.55	17.55	17.55	17.54	17.54	17.54	17.54	17.54	17.54
18.00	DISCHG	17.54	17.48	17.30	17.11	16.99	16.93	16.85	16.72	16.57	16.47
19.00	DISCHG	16.38	16.39	16.58	16.78	16.87	16.88	16.81	16.62	16.41	16.28
20.00	DISCHG	16.22	16.19	16.24	16.30	16.31	16.29	16.24	16.12	16.00	15.91
21.00	DISCHG	15.86	15.81	15.77	15.72	15.68	15.63	15.58	15.54	15.49	15.44
22.00	DISCHG	15.39	15.37	15.41	15.45	15.45	15.43	15.30	14.94	14.55	14.31
23.00	DISCHG	14.16	14.05	13.94	13.83	13.71	13.59	13.47	13.34	13.22	13.09
24.00	DISCHG	12.20	10.57	8.09	3.96	2.12	1.17	.66	.37	.21	.12
25.00	DISCHG	.06	.04	.02	.01	.01	.00				
26.00	DISCHG										

RUNOFF VOLUME ABOVE BASEFLOW = 1.33 WATERSHED INCHES, 1009.65 CFS-HRS, 83.44 ACRE-FEET; BASEFLOW = .00 CFS

EXECUTIVE CONTROL OPERATION ENDCMP RECORD ID
COMPUTATIONS COMPLETED FOR PASS 2

EXECUTIVE CONTROL OPERATION INCREM RECORD ID
MAIN TIME INCREMENT = .10 HOURS

EXECUTIVE CONTROL OPERATION COMPUT RECORD ID
FROM XSECTION 24

TO XSECTION 14
STARTING TIME = .00 RAIN DEPTH = 2.40 RAIN DURATION= 1.00 RAIN TABLE NO.= 7 ANT. MOIST. COND= 2
ALTERNATE NO.= 1 STORM NO.= 3 MAIN TIME INCREMENT = .10 HOURS

OPERATION RUNOFF CROSS SECTION 24

TR20 XEQ 03-30-98 07:42 CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM JOB 1 PASS 3
REV PC 09/83(.2) EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHEDT PAGE 14

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.15	145.67	(RUNOFF)
10.41	4.79	(RUNOFF)

11.57	4.49	(RUNOFF)
12.57	4.51	(RUNOFF)
14.07	4.54	(RUNOFF)
18.88	2.52	(RUNOFF)
23.50	1.90	(RUNOFF)

OPERATION RESVOR STRUCTURE 7

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.18	145.04	5453.07
10.45	4.79	5450.80
11.62	4.42	5450.74
12.63	4.45	5450.74
14.13	4.48	5450.75
18.92	2.52	5450.42
23.56	1.89	5450.31

OPERATION RUNOFF CROSS SECTION 22

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.10	80.86	(RUNOFF)
7.47	5.73	(RUNOFF)
10.43	2.42	(RUNOFF)
11.52	2.36	(RUNOFF)
12.51	2.38	(RUNOFF)
14.02	2.40	(RUNOFF)
23.47	1.01	(RUNOFF)

OPERATION RESVOR STRUCTURE 9

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.10	76.61	5491.39
7.47	5.72	5489.34
10.45	2.43	5488.61
12.57	2.36	5488.59
14.07	2.38	5488.60

**WARNING - LACK OF LOW FLOW DEFINITION FOR XSECT TABLE 20. MAX.FLOW LESS THAN 2ND TABLE VALUE.

*** WARNING REACH 20 ATT-KIN COEFF.(C) GREATER THAN 0.667, CONSIDER REDUCING MAIN TIME INCREMENT ***

R20 XEQ 03-30-98 07:42
REV PC 09/83(.2)

CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET

JOB 1 PASS 3
PAGE 15

OPERATION RUNOFF CROSS SECTION 20

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.20	60.83	(RUNOFF)

OPERATION ADDHYD CROSS SECTION 20

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.23	131.97	5435.92
10.46	4.86	5434.08
11.66	4.49	5434.08
12.65	4.52	5434.08
14.16	4.56	5434.08
18.95	2.59	5434.04
23.57	1.94	5434.03

OPERATION RESVOR STRUCTURE 6

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.26	130.45	5437.86
10.47	4.86	5434.69
11.70	4.45	5434.64
12.70	4.48	5434.64
14.21	4.52	5434.65
18.96	2.59	5434.37
23.61	1.91	5434.27

OPERATION RUNOFF CROSS SECTION 18

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.27	142.99	(RUNOFF)
10.46	7.34	(RUNOFF)
11.65	6.53	(RUNOFF)
12.65	6.59	(RUNOFF)
14.16	6.62	(RUNOFF)
18.91	3.97	(RUNOFF)
23.56	2.90	(RUNOFF)

*** WARNING - STRUCTURE 5 DELTA T IS TOO LARGE. 0 /2 > S /DELTA T OCCURED 3 TIMES STARTING WITH POINT255

OPERATION RESVOR STRUCTURE 5

TR20 XEQ 03-30-98 07:42 CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
REV PC 09/83(.2) EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET

JOB 1 PASS 3
PAGE 16

** WARNING-MAIN TIME INCREMENT MAY BE TOO LARGE.

COMPUTED PEAK(141.63) AT EXCEEDS MAX. ADJACENT HYDROGRAPH COORDINATE BY 6 %.
STRUCTURE 5

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.35	141.63	5437.22
10.47	7.33	5432.56
11.68	6.51	5432.50
12.68	6.58	5432.51
14.19	6.61	5432.51
18.95	3.97	5432.31
23.58	2.88	5432.22

IE(HRS)	FIRST HYDROGRAPH POINT =			.00 HOURS	TIME INCREMENT =			.10 HOURS	DRAINAGE AREA =	.43 SQ.MI.	
5.00	DISCHG	.00	.00	.00	.00	.00	.00	.00	.58	5.40	21.19
6.00	DISCHG	38.57	54.30	67.08	133.49	133.04	108.57	83.12	68.94	65.87	61.56
7.00	DISCHG	56.48	48.65	39.47	28.70	20.78	18.69	18.37	17.65	16.92	16.10
8.00	DISCHG	15.41	14.82	14.06	12.97	11.64	10.35	9.31	8.57	8.08	7.77
9.00	DISCHG	7.57	7.44	7.35	7.30	7.27	7.25	7.24	7.24	7.25	7.26
10.00	DISCHG	7.27	7.28	7.29	7.31	7.32	7.33	7.28	7.06	6.59	5.96
11.00	DISCHG	5.32	4.86	4.73	4.98	5.47	6.01	6.41	6.50	6.25	5.75
12.00	DISCHG	5.21	4.81	4.72	4.98	5.49	6.05	6.46	6.57	6.32	5.82
13.00	DISCHG	5.27	4.79	4.45	4.24	4.10	4.01	4.01	4.21	4.68	5.33
14.00	DISCHG	5.98	6.46	6.61	6.36	5.87	5.31	4.84	4.51	4.30	4.16
15.00	DISCHG	4.06	4.00	3.96	3.93	3.91	3.90	3.90	3.89	3.89	3.89
16.00	DISCHG	3.89	3.89	3.90	3.90	3.90	3.91	3.91	3.91	3.91	3.92
17.00	DISCHG	3.92	3.92	3.93	3.93	3.93	3.93	3.94	3.94	3.94	3.94
18.00	DISCHG	3.95	3.95	3.95	3.96	3.96	3.96	3.96	3.97	3.97	3.97
19.00	DISCHG	3.97	3.95	3.85	3.64	3.37	3.10	2.86	2.64	2.44	2.23
20.00	DISCHG	2.05	1.95	2.00	2.24	2.61	2.99	3.29	3.43	3.37	3.19
21.00	DISCHG	2.98	2.81	2.73	2.76	2.84	2.94	3.02	3.03	2.97	2.86
22.00	DISCHG	2.74	2.64	2.56	2.52	2.49	2.47	2.45	2.45	2.44	2.44
23.00	DISCHG	2.44	2.45	2.49	2.59	2.71	2.83	2.88	2.77	2.42	1.92
24.00	DISCHG	1.41	.98	.67	.46	.32	.21	.14	.09	.06	.04
25.00	DISCHG	.03	.02	.01	.00						

OPERATION REACH CROSS SECTION 16

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.52	120.98	5391.73
10.58	7.32	5390.12
11.83	6.36	5390.10
12.83	6.42	5390.10
14.34	6.42	5390.10
19.06	3.97	5390.06
23.72	2.83	5390.05

TR20 XEQ 03-30-98 07:42 CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
REV PC 09/83(.2) EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET

JOB 1 PASS 3
PAGE 17

OPERATION ADDHYD CROSS SECTION 16

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.44	228.16	5392.32
10.57	12.10	5390.19
11.80	10.63	5390.17
12.81	10.72	5390.17
14.32	10.74	5390.17
19.05	6.49	5390.10
23.70	4.67	5390.07

OPERATION RUNOFF CROSS SECTION 16

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET) (RUNOFF)
6.21	98.69	

10.43	3.85	(RUNOFF)
11.62	3.48	(RUNOFF)
12.62	3.52	(RUNOFF)
14.12	3.53	(RUNOFF)
18.95	2.05	(RUNOFF)
23.55	1.50	(RUNOFF)

OPERATION ADDHYD CROSS SECTION 16

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.24	227.40	5392.32
10.45	8.72	5390.14
11.67	7.88	5390.13
12.67	7.96	5390.13
14.17	7.99	5390.13
18.95	4.64	5390.07
23.58	3.41	5390.05

OPERATION ADDHYD CROSS SECTION 16

TR20 XEQ 03-30-98 07:42 CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM JOB 1 PASS 3
 REV PC 09/83(.2) EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET PAGE 18

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.33	407.50	5393.10
10.48	20.80	5390.33
11.74	18.26	5390.29
12.74	18.40	5390.29
14.25	18.42	5390.29
18.96	11.13	5390.18
20.79	9.50	5390.15
21.73	8.43	5390.13
23.63	7.98	5390.13

TIME(HRS)	FIRST HYDROGRAPH POINT = .00 HOURS			TIME INCREMENT = .10 HOURS			DRAINAGE AREA =	1.09 SQ.MI.			
5.00	DISCHG	.00	.00	.00	.00	.18	2.63	16.50	54.49		
6.00	DISCHG	131.90	277.98	374.62	405.45	399.25	342.11	272.71	211.84	168.44	143.21
7.00	DISCHG	124.99	110.39	97.06	84.57	71.76	60.59	54.89	51.97	49.81	47.79
8.00	DISCHG	45.76	43.86	41.86	39.27	35.91	32.18	28.76	26.01	24.01	22.69
9.00	DISCHG	21.86	21.35	21.03	20.83	20.72	20.66	20.63	20.62	20.63	20.64
10.00	DISCHG	20.67	20.69	20.72	20.75	20.78	20.80	20.74	20.38	19.47	17.98
11.00	DISCHG	16.19	14.61	13.70	13.71	14.63	16.05	17.40	18.19	18.09	17.12
12.00	DISCHG	15.68	14.34	13.56	13.69	14.67	16.15	17.53	18.33	18.24	17.28
13.00	DISCHG	15.82	14.37	13.21	12.36	11.79	11.43	11.29	11.53	12.40	13.91
14.00	DISCHG	15.73	17.36	18.30	18.31	17.40	15.97	14.51	13.34	12.50	11.93
15.00	DISCHG	11.56	11.32	11.17	11.07	11.01	10.98	10.95	10.94	10.94	10.94
16.00	DISCHG	10.94	10.94	10.95	10.95	10.96	10.97	10.97	10.98	10.99	10.99
17.00	DISCHG	11.00	11.01	11.01	11.02	11.02	11.03	11.04	11.04	11.05	11.06
18.00	DISCHG	11.06	11.07	11.08	11.08	11.09	11.09	11.10	11.11	11.11	11.12
19.00	DISCHG	11.12	11.09	10.94	10.54	9.90	9.13	8.40	7.76	7.17	6.57
20.00	DISCHG	6.02	5.60	5.50	5.85	6.66	7.71	8.68	9.31	9.49	9.23
21.00	DISCHG	8.72	8.19	7.82	7.69	7.79	8.03	8.28	8.43	8.39	8.17
22.00	DISCHG	7.86	7.54	7.29	7.11	6.99	6.91	6.86	6.83	6.81	6.80

23.00	DISCHG	6.79	6.81	6.88	7.06	7.36	7.71	7.97	7.90	7.32	6.20
24.00	DISCHG	4.80	3.47	2.41	1.64	1.10	.73	.48	.30	.19	.12
25.00	DISCHG	.07	.04	.03	.02	.01	.00				

RUNOFF VOLUME ABOVE BASEFLOW = .82 WATERSHED INCHES, 576.08 CFS-HRS, 47.61 ACRE-FEET; BASEFLOW = .00 CFS

OPERATION RESVOR STRUCTURE 54

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
7.11	109.67	5399.74
12.93	16.84	5396.01
14.51	15.81	5395.94
23.70	7.83	5393.79

TIME(HRS)	FIRST HYDROGRAPH POINT =	.00 HOURS	TIME INCREMENT =	.10 HOURS	DRAINAGE AREA =	1.09 SQ.MI.					
5.00	DISCHG	.00	.00	.00	.00	.64	5.06	12.70			
6.00	DISCHG	13.77	15.66	59.48	83.95	92.70	100.06	104.62	106.93	108.32	109.12

TR20 XEQ 03-30-98 07:42 CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
REV PC 09/83(.2) EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET

JOB 1 PASS 3
PAGE 19

7.00	DISCHG	109.54	109.67	109.57	109.26	108.74	108.02	107.18	106.28	105.35	104.40
8.00	DISCHG	103.44	102.14	100.57	98.98	97.35	95.67	93.94	92.18	90.40	88.55
9.00	DISCHG	86.70	84.88	83.10	81.36	79.67	78.02	69.09	61.46	55.04	49.62
10.00	DISCHG	45.06	41.23	38.00	35.28	33.00	31.08	29.45	28.06	26.78	25.51
11.00	DISCHG	24.18	22.80	21.44	20.22	19.27	18.65	18.35	18.26	18.24	18.14
12.00	DISCHG	17.87	17.42	16.87	16.36	16.02	16.00	16.06	16.35	16.65	16.83
13.00	DISCHG	16.78	16.52	16.09	15.97	15.93	15.89	15.85	15.80	15.77	15.74
14.00	DISCHG	15.73	15.74	15.76	15.78	15.80	15.81	15.81	15.79	15.76	15.73
15.00	DISCHG	15.69	15.65	15.60	15.56	15.51	15.47	15.42	15.38	15.34	15.29
16.00	DISCHG	15.25	15.21	15.17	15.12	15.08	15.04	15.00	14.96	14.92	14.88
17.00	DISCHG	14.85	14.81	14.77	14.73	14.70	14.66	14.62	14.59	14.55	14.52
18.00	DISCHG	14.49	14.45	14.42	14.39	14.35	14.32	14.29	14.26	14.23	14.20
19.00	DISCHG	14.17	14.13	14.10	14.07	14.03	13.99	13.94	13.88	13.82	13.75
20.00	DISCHG	13.67	13.60	13.52	13.44	13.37	13.31	13.26	13.21	13.18	13.14
21.00	DISCHG	13.10	13.05	13.00	12.24	11.55	11.00	10.56	10.23	9.95	9.69
22.00	DISCHG	9.44	9.17	8.60	7.72	7.30	7.08	6.96	6.89	6.85	6.82
23.00	DISCHG	6.81	6.80	6.83	6.92	7.10	7.38	7.67	7.83	7.69	7.10
24.00	DISCHG	6.09	4.85	3.64	2.86	2.21	1.64	1.19	.84	.58	.39
25.00	DISCHG	.26	.17	.11	.07	.04	.03	.01	.01	.00	

RUNOFF VOLUME ABOVE BASEFLOW = .82 WATERSHED INCHES, 575.57 CFS-HRS, 47.57 ACRE-FEET; BASEFLOW = .00 CFS

*** WARNING REACH 14 ATT-KIN COEFF.(C) GREATER THAN 0.667, CONSIDER REDUCING MAIN TIME INCREMENT ***

OPERATION REACH CROSS SECTION 14

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
7.24	109.63	5367.87
13.05	16.80	5366.30
14.64	15.81	5366.28
23.82	7.79	5366.14

RATION RUNOFF CROSS SECTION 14

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.08	93.78	(RUNOFF)
7.45	5.55	(RUNOFF)
10.39	2.28	(RUNOFF)
12.51	2.23	(RUNOFF)
14.01	2.23	(RUNOFF)

RATION ADDHYD CROSS SECTION 14

TR20 XEQ 03-30-98 07:42
REV PC 09/83(.2)CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDETJOB 1 PASS 3
PAGE 20

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
6.09	106.52	5367.85
7.23	115.17	5367.91
14.00	17.98	5366.32
21.25	13.95	5366.25
23.68	8.18	5366.15

ME(HRS)	FIRST HYDROGRAPH POINT =	.00 HOURS	TIME INCREMENT =	.10 HOURS	DRAINAGE AREA =	1.18 SQ.MI.					
5.00	DISCHG	.00	.00	.00	10.88	33.63	64.39				
6.00	DISCHG	95.28	106.20	86.40	91.90	101.01	105.47	109.80	112.38	113.43	114.13
7.00	DISCHG	114.64	114.99	115.16	115.12	114.86	114.40	113.65	112.55	111.35	110.25
8.00	DISCHG	109.21	108.02	106.15	103.98	102.02	100.22	98.47	96.71	94.94	93.16
9.00	DISCHG	91.32	89.47	87.65	85.86	84.11	82.41	80.75	73.40	65.83	59.16
10.00	DISCHG	53.48	48.68	44.63	41.22	38.36	35.95	33.82	31.79	29.98	28.47
11.00	DISCHG	27.10	25.84	24.77	23.74	22.69	21.76	21.01	20.31	19.83	19.59
12.00	DISCHG	19.41	19.22	19.13	18.95	18.63	18.35	18.19	17.91	17.81	17.91
13.00	DISCHG	18.02	17.98	17.75	17.36	17.18	17.12	17.17	17.45	17.76	17.92
14.00	DISCHG	17.98	17.91	17.62	17.30	17.12	17.05	17.02	16.99	16.97	16.94
15.00	DISCHG	16.90	16.87	16.82	16.78	16.74	16.69	16.65	16.61	16.56	16.52
16.00	DISCHG	16.48	16.43	16.39	16.35	16.31	16.27	16.23	16.19	16.15	16.11
17.00	DISCHG	16.07	16.03	15.99	15.96	15.92	15.88	15.85	15.81	15.78	15.74
18.00	DISCHG	15.71	15.67	15.64	15.61	15.57	15.54	15.51	15.48	15.45	15.42
19.00	DISCHG	15.38	15.31	15.15	14.98	14.86	14.79	14.70	14.58	14.45	14.34
20.00	DISCHG	14.26	14.24	14.36	14.49	14.53	14.52	14.44	14.27	14.09	13.97
21.00	DISCHG	13.90	13.86	13.87	13.89	13.32	12.67	12.08	11.55	11.12	10.78
22.00	DISCHG	10.50	10.23	9.96	9.46	8.65	8.15	7.87	7.72	7.63	7.57
23.00	DISCHG	7.54	7.55	7.60	7.68	7.79	7.97	8.15	8.18	8.10	7.88
24.00	DISCHG	7.32	6.39	5.20	3.99	3.11	2.40	1.80	1.32	.94	.66
25.00	DISCHG	.45	.30	.20	.13	.08	.05	.03	.02	.01	.00

RUNOFF VOLUME ABOVE BASEFLOW = .86 WATERSHED INCHES, 650.90 CFS-HRS, 53.79 ACRE-FEET; BASEFLOW = .00 CFS

EXECUTIVE CONTROL OPERATION ENDCMP RECORD ID
COMPUTATIONS COMPLETED FOR PASS 3

EXECUTIVE CONTROL OPERATION ENDJOB RECORD ID

TR20 XEQ 03-30-98 07:42
REV PC 09/83(.2)

CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET

JOB 1 SUMMARY
PAGE 21

SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED
(A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH
A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.)

ACTION/ STRUCTURE ID	STANDARD CONTROL OPERATION	RAIN DRAINAGE AREA (SQ MI)	ANTEC TABLE #	MAIN MOIST COND INCREM (HR)	PRECIPITATION				RUNOFF AMOUNT (IN)	PEAK DISCHARGE			
					BEGIN (HR)	AMOUNT (IN)	DURATION (HR)	ELEVATION (FT)		TIME (HR)	RATE (CFS)	RATE (CSM)	
ALTERNATE 1 STORM 1													
XSECTION 24	RUNOFF	.22	7	2	.10	.0	3.40	24.00	1.78	---	6.13	274.90	1238.3
STRUCTURE 7	RESVOR	.22	7	2	.10	.0	3.40	24.00	1.78	5453.66	6.16	271.90	1224.8
XSECTION 16	REACH	.22	7	2	.10	.0	3.40	24.00	1.78	5392.44	6.30	254.93	1148.3
XSECTION 22	RUNOFF	.12	7	2	.10	.0	3.40	24.00	1.63	---	6.08	156.29	1291.6
STRUCTURE 9	RESVOR	.12	7	2	.10	.0	3.40	24.00	1.64	5491.90	6.09	159.97	1322.1
XSECTION 20	REACH	.12	7	2	.10	.0	3.40	24.00	1.62	5436.06	6.21	151.20	1249.6
XSECTION 20	RUNOFF	.13	7	2	.10	.0	3.40	24.00	1.56	---	6.18	122.98	968.3
XSECTION 20	ADDHYD	.25	7	2	.10	.0	3.40	24.00	1.59	5436.69	6.20	273.60	1103.2
STRUCTURE 6	RESVOR	.25	7	2	.10	.0	3.40	24.00	1.59	5438.25	6.21	266.23	1073.5
XSECTION 18	RUNOFF	.43	7	2	.10	.0	3.40	24.00	1.37	---	6.24	315.71	739.4
STRUCTURE 5	RESVOR	.43	7	2	.10	.0	3.40	24.00	1.37	5437.74	6.28	310.42	727.0
XSECTION 16	REACH	.43	7	2	.10	.0	3.40	24.00	1.37	5392.61	6.43	294.16	688.9
XSECTION 16	ADDHYD	.65	7	2	.10	.0	3.40	24.00	1.51	5393.56	6.37	522.85	805.6
XSECTION 16	RUNOFF	.19	7	2	.10	.0	3.40	24.00	1.68	---	6.20	192.79	1025.5
SECTION 16	ADDHYD	.44	7	2	.10	.0	3.40	24.00	1.63	5393.32	6.21	458.66	1052.0
XSECTION 16	ADDHYD	1.09	7	2	.10	.0	3.40	24.00	1.56	5394.69	6.30	926.33	853.8
STRUCTURE 54	RESVOR	1.09	7	2	.10	.0	3.40	24.00	1.56	5403.29	7.08	160.19	147.6
SECTION 14	REACH	1.09	7	2	.10	.0	3.40	24.00	1.56	5368.22	7.21	159.96	147.4
XSECTION 14	RUNOFF	.09	7	2	.10	.0	3.40	24.00	2.13	---	6.07	160.16	1740.8
SECTION 14	ADDHYD	1.18	7	2	.10	.0	3.40	24.00	1.60	5368.44	6.18	191.83	163.0
ALTERNATE 1 STORM 2													
SECTION 24	RUNOFF	.22	7	2	.10	.0	3.05	24.00	1.49	---	6.14	227.85	1026.4
STRUCTURE 7	RESVOR	.22	7	2	.10	.0	3.05	24.00	1.49	5453.44	6.16	225.39	1015.3
XSECTION 16	REACH	.22	7	2	.10	.0	3.05	24.00	1.49	5392.24	6.30	209.12	942.0
SECTION 22	RUNOFF	.12	7	2	.10	.0	3.05	24.00	1.35	---	6.09	128.76	1064.1
STRUCTURE 9	RESVOR	.12	7	2	.10	.0	3.05	24.00	1.37	5491.75	6.10	134.70	1113.2
XSECTION 20	REACH	.12	7	2	.10	.0	3.05	24.00	1.34	5435.88	6.21	124.96	1032.7
XSECTION 20	RUNOFF	.13	7	2	.10	.0	3.05	24.00	1.29	---	6.19	100.03	787.7
XSECTION 20	ADDHYD	.25	7	2	.10	.0	3.05	24.00	1.31	5436.50	6.21	224.54	905.4
STRUCTURE 6	RESVOR	.25	7	2	.10	.0	3.05	24.00	1.32	5438.16	6.22	221.90	894.8
XSECTION 18	RUNOFF	.43	7	2	.10	.0	3.05	24.00	1.12	---	6.25	251.34	588.6
STRUCTURE 5	RESVOR	.43	7	2	.10	.0	3.05	24.00	1.11	5437.54	6.28	247.00	578.5

TR20 XEQ 03-30-98 07:42
REV PC 09/83(.2)

CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET

JOB 1 SUMMARY
PAGE 22

SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED
(A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH
A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.)

SECTION/ STRUCTURE ID	STANDARD CONTROL OPERATION	DRAINAGE AREA (SQ MI)	RAIN TABLE #	ANTEC MOIST COND	MAIN INCREM (HR)	PRECIPITATION			RUNOFF AMOUNT (IN)	PEAK DISCHARGE		
						BEGIN (HR)	AMOUNT (IN)	DURATION (HR)		ELEVATION (FT)	TIME (HR)	RATE (CFS)
ALTERNATE 1 STORM 2												
XSECTION 16 REACH .43		7	2	.10	.0	3.05	24.00	1.12	5392.33	6.45	230.74	540.4
XSECTION 16 ADDHYD .65		7	2	.10	.0	3.05	24.00	1.25	5393.14	6.38	416.86	642.3
SECTION 16 RUNOFF .19		7	2	.10	.0	3.05	24.00	1.40	---	6.20	158.30	842.0
SECTION 16 ADDHYD .44		7	2	.10	.0	3.05	24.00	1.35	5392.98	6.21	379.78	871.1
XSECTION 16 ADDHYD 1.09		7	2	.10	.0	3.05	24.00	1.29	5394.17	6.31	740.69	682.7
STRUCTURE 54 RESVOR 1.09		7	2	.10	.0	3.05	24.00	1.29	5402.19	7.14	133.56	123.1
XSECTION 14 REACH 1.09		7	2	.10	.0	3.05	24.00	1.29	5368.03	7.28	133.53	123.1
XSECTION 14 RUNOFF .09		7	2	.10	.0	3.05	24.00	1.82	---	6.07	136.48	1483.5
SECTION 14 ADDHYD 1.18		7	2	.10	.0	3.05	24.00	1.33	5368.21	6.19	158.96	135.1
ALTERNATE 1 STORM 3												
SECTION 24 RUNOFF .22		7	2	.10	.0	2.40	24.00	.99	---	6.15	145.67	656.2
STRUCTURE 7 RESVOR .22		7	2	.10	.0	2.40	24.00	.99	5453.07	6.18	145.04	653.3
XSECTION 16 REACH .22		7	2	.10	.0	2.40	24.00	.99	5391.78	6.33	130.43	587.5
SECTION 22 RUNOFF .12		7	2	.10	.0	2.40	24.00	.87	---	6.10	80.86	668.3
STRUCTURE 9 RESVOR .12		7	2	.10	.0	2.40	24.00	.86	5491.39	6.10	76.61	633.1
SECTION 20 REACH .12		7	2	.10	.0	2.40	24.00	.88	5435.24	6.25	73.00	603.3
SECTION 20 RUNOFF .13		7	2	.10	.0	2.40	24.00	.82	---	6.20	60.83	479.0
XSECTION 20 ADDHYD .25		7	2	.10	.0	2.40	24.00	.85	5435.92	6.23	131.97	532.1
STRUCTURE 6 RESVOR .25		7	2	.10	.0	2.40	24.00	.85	5437.86	6.26	130.45	526.0
SECTION 18 RUNOFF .43		7	2	.10	.0	2.40	24.00	.69	---	6.27	142.99	334.9
STRUCTURE 5 RESVOR .43		7	2	.10	.0	2.40	24.00	.69	5437.22	6.35	141.63	331.7
XSECTION 16 REACH .43		7	2	.10	.0	2.40	24.00	.69	5391.73	6.52	120.98	283.3
XSECTION 16 ADDHYD .65		7	2	.10	.0	2.40	24.00	.79	5392.32	6.44	228.16	351.6
XSECTION 16 RUNOFF .19		7	2	.10	.0	2.40	24.00	.91	---	6.21	98.69	525.0
SECTION 16 ADDHYD .44		7	2	.10	.0	2.40	24.00	.87	5392.32	6.24	227.40	521.6
XSECTION 16 ADDHYD 1.09		7	2	.10	.0	2.40	24.00	.82	5393.10	6.33	407.50	375.6
STRUCTURE 54 RESVOR 1.09		7	2	.10	.0	2.40	24.00	.82	5399.74	7.11	109.67	101.1
XSECTION 14 REACH 1.09		7	2	.10	.0	2.40	24.00	.82	5367.87	7.24	109.63	101.0
XSECTION 14 RUNOFF .09		7	2	.10	.0	2.40	24.00	1.26	---	6.08	93.78	1019.4
XSECTION 14 ADDHYD 1.18		7	2	.10	.0	2.40	24.00	.86	5367.91	7.23	115.17	97.9

JMMARY TABLE 2 - SELECTED MODIFIED ATT-KIN REACH ROUTINGS IN ORDER OF STANDARD EXECUTIVE CONTROL INSTRUCTIONS
(A STAR(*) AFTER VOLUME ABOVE BASE(IN) INDICATES A HYDROGRAPH TRUNCATED AT A VALUE EXCEEDING BASE + 10% OF PEAK
A QUESTION MARK(?) AFTER COEFF.(C) INDICATES PARAMETERS OUTSIDE ACCEPTABLE LIMITS, SEE PREVIOUS WARNINGS)

HYDROGRAPH INFORMATION

ROUTING PARAMETERS

PEAK

A SEC REACH	OUTFLOW+								VOLUME	MAIN	ITER-	Q AND A	PEAK	S/Q	ATT-	TRAVEL TIME					
	ID	LENGTH	INFLOW	OUTFLOW	INTERV.	AREA	BASE-	ABOVE													
		(FT)	PEAK	TIME	PEAK	TIME	PEAK	TIME	FLOW	(CFS)	BASE	INCR	#	COEFF	POWER	FACTOR	O/I	(K)	COEFF	AGE	MATIC
ALTERNATE 1 STORM 1																					
16	2900	266	6.2	255	6.3	---	---	---	0	1.78	.10	1	1.27	1.40	.067	.957	357	.67?	.10	.10	
20	2700	160	6.1	151	6.2	274	6.2	0	1.64	.10	1	2.38	1.35	.065	.945	283	.78?	.10	.08		
+ 16	2900	310	6.3	292	6.4	---	---	---	0	1.37	.10	1	1.28	1.39	.045	.941	343	.69?	.10	.10	
+ 14	2300	160	7.1	160	7.2	191	6.2	0	1.56	.10	1	2.23	1.35	.003	.999	254	.83?	.10	.07		
ALTERNATE 1 STORM 2																					
+ 16	2900	221	6.2	209	6.3	---	---	---	0	1.49	.10	1	1.26	1.40	.071	.945	374	.65	.10	.10	
+ 20	2700	135	6.1	125	6.2	224	6.2	0	1.37	.10	1	2.38	1.35	.070	.925	295	.76?	.10	.08		
+ 16	2900	246	6.3	226	6.4	---	---	---	0	1.11	.10	1	1.27	1.40	.048	.918	364	.66	.10	.10	
+ 14	2300	134	7.1	134	7.3	159	6.2	0	1.29	.10	1	2.23	1.35	.003	1.000	266	.81?	.20	.07		
ALTERNATE 1 STORM 3																					
16	2900	144	6.2	129	6.3	---	---	---	0	.99	.10	1	1.26	1.40	.082	.897	422	.60	.10	.12	
+ 20	2700	77	6.1	70	6.3	131	6.2	0	.86	.10	1	2.38	1.35	.074	.918	342	.69?	.20	.10		
+ 16	2900	133	6.3	120	6.5	---	---	---	0	.69	.10	1	1.26	1.40	.050	.902	432	.59	.20	.12	

--- ---

2.23

14	2300	110	7.1	110	7.2	115	0	.82	.10	1	1.35	.005	.999	280	.78?	.10	.08
						7.2											

TR20 XEQ 03-30-98 07:42
REV PC 09/83(.2)

CANON CITY ORCHARD AVE BASIN TR20 RUN 24 HR. 100 50 10 YR. STORM
EXISTING CONDITIONS W/ DETENTION & TYPE II STORM INPUT:ORCHDET

JOB 1 SUMMARY
PAGE 24

MMARY TABLE 3 - DISCHARGE (CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES

XSECTION/ STRUCTURE ID	DRAINAGE AREA (SQ MI)	STORM NUMBERS.....	1	2	3
STRUCTURE 54	1.09				
ALTERNATE 1		160.19	133.56	109.67	
STRUCTURE 9	.12				
ALTERNATE 1		159.97	134.70	76.61	
STRUCTURE 7	.22				
ALTERNATE 1		271.90	225.39	145.04	
STRUCTURE 6	.25				
ALTERNATE 1		266.23	221.90	130.45	
STRUCTURE 5	.43				
ALTERNATE 1		310.42	247.00	141.63	
XSECTION 14	1.18				
ALTERNATE 1		191.83	158.96	115.17	
XSECTION 16	1.09				
ALTERNATE 1		926.33	740.69	407.50	
XSECTION 18	.43				
ALTERNATE 1		315.71	251.34	142.99	
XSECTION 20	.25				
ALTERNATE 1		273.60	224.54	131.97	
XSECTION 22	.12				
ALTERNATE 1		156.29	128.76	80.86	
XSECTION 24	.22				
ALTERNATE 1		274.90	227.85	145.67	

1END OF 1 JOBS IN THIS RUN

SECTION 3

HEC-RAS Run – Pre Detention Conditions

HEC-RAS Version 2.0 April 1997
U.S. Army Corp of Engineers
Hydrologic Engineering Center
609 Second Street, Suite D
Davis, California 95616-4687
(916) 756-1104

X	X	XXXXXX	XXXX	XXXX	XX	XXXX
X	X	X	X	X	X	X
X	X	X	X	X	X	X
XXXXXX	XXXX	X	XXX	XXXX	XXXXXX	XXXX
X	X	X	X	X	X	X
X	X	X	X	X	X	X
X	X	XXXXXX	XXXX	X	X	XXXX

PROJECT DATA

Project Title: CANON CITY LOMR-PRE DET. W/ EXIST. FEMA
Project File : expredev.prj
Run Date and Time: 3/30/98 9:30:08 AM

Project in English units

Project Description:

PRE DETENTION CONDITIONS WITH AS BUILT AND EXISTING FEMA CROSS SECTIONS

CITY OF CANON CITY LOMR

/26/98

JW

ROSS SECTION RIVER: NE CANON DRAINAG

REACH: SUB-BASIN FROM N RS: 11

ROSS SECTION OUTPUT Profile #100 YR.

* W.S. Elev (ft)	* 5437.82 * Element	* Left OB	* Channel	* Right OB	*
* Vel Head (ft)	* 0.12 * Wt. n-Val.	* 0.060	* 0.040	* 0.060	*
* E.G. Elev (ft)	* 5437.94 * Reach Len. (ft)	* 130.52	* 178.20	* 226.20	*
* Crit W.S. (ft)	* * Flow Area (sq ft)	* 70.99	* 190.17	* 185.92	*
E.G. Slope (ft/ft)	* 0.004687 * Area (sq ft)	* 70.99	* 190.17	* 185.92	*
Q Total (cfs)	* 926.00 * Flow (cfs)	* 89.23	* 617.52	* 219.25	*
* Top Width (ft)	* 563.49 * Top Width (ft)	* 111.19	* 131.80	* 320.50	*
Vel Total (ft/s)	* 2.07 * Avg. Vel. (ft/s)	* 1.26	* 3.25	* 1.18	*
Max Chl Dpth (ft)	* 1.85 * Hydr. Depth (ft)	* 0.64	* 1.44	* 0.58	*
* Conv. Total (cfs)	* 13525.4 * Conv. (cfs)	* 1303.3	* 9019.6	* 3202.5	*
* Length Wtd. (ft)	* 182.35 * Wetted Per. (ft)	* 111.23	* 131.82	* 320.51	*
Min Ch El (ft)	* 5435.97 * Shear (lb/sq ft)	* 0.19	* 0.42	* 0.17	*
* Alpha	* 1.75 * Stream Power (lb/ft s)	* 0.23	* 1.37	* 0.20	*
* Frctn Loss (ft)	* 0.04 * Cum Volume (acre-ft)	* 23.12	* 21.02	* 28.89	*
C & E Loss (ft)	* 0.03 * Cum SA (acres)	* 15.65	* 8.88	* 12.02	*

Warning - The cross-section end points had to be extended vertically for the computed water surface.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #50 YR.

```
*****
W.S. Elev (ft) * 5437.74 * Element * Left OB * Channel * Right OB *
Vel Head (ft) * 0.09 * Wt. n-Val. * 0.060 * 0.040 * 0.060 *
* E.G. Elev (ft) * 5437.83 * Reach Len. (ft) * 130.52 * 178.20 * 226.20 *
Crit W.S. (ft) * * Flow Area (sq ft) * 62.12 * 179.55 * 160.27 *
E.G. Slope (ft/ft) * 0.003944 * Area (sq ft) * 62.12 * 179.55 * 160.27 *
* Q Total (cfs) * 740.00 * Flow (cfs) * 66.67 * 514.74 * 158.59 *
* Top Width (ft) * 555.98 * Top Width (ft) * 108.36 * 131.80 * 315.83 *
Vel Total (ft/s) * 1.84 * Avg. Vel. (ft/s) * 1.07 * 2.87 * 0.99 *
* Max Chl Dpth (ft) * 1.77 * Hydr. Depth (ft) * 0.57 * 1.36 * 0.51 *
* Conv. Total (cfs) * 11782.6 * Conv. (cfs) * 1061.5 * 8196.0 * 2525.1 *
Length Wtd. (ft) * 181.89 * Wetted Per. (ft) * 108.37 * 131.82 * 315.84 *
Min Ch El (ft) * 5435.97 * Shear (lb/sq ft) * 0.14 * 0.34 * 0.12 *
* Alpha * 1.78 * Stream Power (lb/ft s) * 0.15 * 0.96 * 0.12 *
Frctn Loss (ft) * 0.03 * Cum Volume (acre-ft) * 18.31 * 18.95 * 23.81 *
C & E Loss (ft) * 0.03 * Cum SA (acres) * 13.79 * 8.54 * 11.70 *
*****
```

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #10 YR.

```
*****
* W.S. Elev (ft) * 5437.52 * Element * Left OB * Channel * Right OB *
* Vel Head (ft) * 0.05 * Wt. n-Val. * 0.060 * 0.040 * 0.060 *
* E.G. Elev (ft) * 5437.57 * Reach Len. (ft) * 130.52 * 178.20 * 226.20 *
* Crit W.S. (ft) * * Flow Area (sq ft) * 39.48 * 150.59 * 99.13 *
* E.G. Slope (ft/ft) * 0.002612 * Area (sq ft) * 39.48 * 150.59 * 99.13 *
* Q Total (cfs) * 408.00 * Flow (cfs) * 27.30 * 312.43 * 68.27 *
* Top Width (ft) * 476.44 * Top Width (ft) * 97.73 * 131.80 * 246.91 *
* Vel Total (ft/s) * 1.41 * Avg. Vel. (ft/s) * 0.69 * 2.07 * 0.69 *
* Max Chl Dpth (ft) * 1.55 * Hydr. Depth (ft) * 0.40 * 1.14 * 0.40 *
* Conv. Total (cfs) * 7983.6 * Conv. (cfs) * 534.2 * 6113.5 * 1336.0 *
* Length Wtd. (ft) * 181.24 * Wetted Per. (ft) * 97.74 * 131.82 * 246.92 *
* Min Ch El (ft) * 5435.97 * Shear (lb/sq ft) * 0.07 * 0.19 * 0.07 *
* Alpha * 1.71 * Stream Power (lb/ft s) * 0.05 * 0.39 * 0.05 *
* Frctn Loss (ft) * 0.01 * Cum Volume (acre-ft) * 11.15 * 14.57 * 13.45 *
* C & E Loss (ft) * 0.02 * Cum SA (acres) * 9.98 * 7.68 * 9.34 *
*****
```

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

CROSS SECTION RIVER: NE CANON DRAINAG

REACH: SUB-BASIN FROM N RS: 10

CROSS SECTION OUTPUT Profile #100 YR.

```
*****
W.S. Elev (ft) * 5437.85 * Element * Left OB * Channel * Right OB *
* Vel Head (ft) * 0.01 * Wt. n-Val. * 0.060 * 0.040 * 0.060 *
* E.G. Elev (ft) * 5437.86 * Reach Len. (ft) * 117.59 * 123.73 * 133.26 *
Crit W.S. (ft) * 5432.42 * Flow Area (sq ft) * 109.02 * 1262.58 * 222.34 *
* E.G. Slope (ft/ft) * 0.000076 * Area (sq ft) * 109.02 * 1262.58 * 222.34 *
* Q Total (cfs) * 926.00 * Flow (cfs) * 29.13 * 840.14 * 56.73 *
Top Width (ft) * 685.34 * Top Width (ft) * 77.83 * 423.91 * 183.60 *
Vel Total (ft/s) * 0.58 * Avg. Vel. (ft/s) * 0.27 * 0.67 * 0.26 *
* Max Chl Dpth (ft) * 8.85 * Hydr. Depth (ft) * 1.40 * 2.98 * 1.21 *
*****
```

Conv. Total (cfs) * 106217.0 * Conv. (cfs) * 3341.0 * 96368.8 * 6507.3 *
 * Length Wtd. (ft) * 123.73 * Wetted Per. (ft) * 79.19 * 428.69 * 184.26 *
 * Min Ch El (ft) * 5429.00 * Shear (lb/sq ft) * 0.01 * 0.01 * 0.01 *
 Alpha * 1.21 * Stream Power (lb/ft s) * 0.00 * 0.01 * 0.00 *
 * Frctn Loss (ft) * * Cum Volume (acre-ft) * 22.85 * 18.05 * 27.83 *
 * C & E Loss (ft) * * Cum SA (acres) * 15.36 * 7.74 * 10.71 *

CROSS SECTION OUTPUT Profile #50 YR.

W.S. Elev (ft) * 5437.77 * Element * Left OB * Channel * Right OB *
 * Vel Head (ft) * 0.00 * Wt. n-Val. * 0.060 * 0.040 * 0.060 *
 * E.G. Elev (ft) * 5437.78 * Reach Len. (ft) * 117.59 * 123.73 * 133.26 *
 Crit W.S. (ft) * 5431.98 * Flow Area (sq ft) * 102.67 * 1228.01 * 207.50 *
 E.G. Slope (ft/ft) * 0.000054 * Area (sq ft) * 102.67 * 1228.01 * 207.50 *
 * Q Total (cfs) * 740.00 * Flow (cfs) * 22.18 * 674.48 * 43.35 *
 Top Width (ft) * 682.05 * Top Width (ft) * 77.83 * 423.91 * 180.31 *
 Vel Total (ft/s) * 0.48 * Avg. Vel. (ft/s) * 0.22 * 0.55 * 0.21 *
 * Max Chl Dpth (ft) * 8.77 * Hydr. Depth (ft) * 1.32 * 2.90 * 1.15 *
 Conv. Total (cfs) * 100950.4 * Conv. (cfs) * 3025.2 * 92011.6 * 5913.6 *
 Length Wtd. (ft) * 123.73 * Wetted Per. (ft) * 79.11 * 428.69 * 180.88 *
 * Min Ch El (ft) * 5429.00 * Shear (lb/sq ft) * 0.00 * 0.01 * 0.00 *
 * Alpha * 1.21 * Stream Power (lb/ft s) * 0.00 * 0.01 * 0.00 *
 Frctn Loss (ft) * * Cum Volume (acre-ft) * 18.07 * 16.07 * 22.85 *
 C & E Loss (ft) * * Cum SA (acres) * 13.51 * 7.40 * 10.42 *

CROSS SECTION OUTPUT Profile #10 YR.

* W.S. Elev (ft) * 5437.54 * Element * Left OB * Channel * Right OB *
 Vel Head (ft) * 0.00 * Wt. n-Val. * 0.060 * 0.040 * 0.060 *
 * E.G. Elev (ft) * 5437.55 * Reach Len. (ft) * 117.59 * 123.73 * 133.26 *
 * Crit W.S. (ft) * 5431.05 * Flow Area (sq ft) * 84.92 * 1131.35 * 167.48 *
 E.G. Slope (ft/ft) * 0.000022 * Area (sq ft) * 84.92 * 1131.35 * 167.48 *
 Q Total (cfs) * 408.00 * Flow (cfs) * 10.37 * 376.80 * 20.83 *
 * Top Width (ft) * 672.03 * Top Width (ft) * 77.83 * 423.91 * 170.29 *
 Vel Total (ft/s) * 0.29 * Avg. Vel. (ft/s) * 0.12 * 0.33 * 0.12 *
 Max Chl Dpth (ft) * 8.54 * Hydr. Depth (ft) * 1.09 * 2.67 * 0.98 *
 Conv. Total (cfs) * 86906.2 * Conv. (cfs) * 2209.2 * 80260.1 * 4437.0 *
 * Length Wtd. (ft) * 123.73 * Wetted Per. (ft) * 78.88 * 428.69 * 170.61 *
 Min Ch El (ft) * 5429.00 * Shear (lb/sq ft) * 0.00 * 0.00 * 0.00 *
 Alpha * 1.19 * Stream Power (lb/ft s) * 0.00 * 0.00 * 0.00 *
 * Frctn Loss (ft) * * Cum Volume (acre-ft) * 10.97 * 11.95 * 12.76 *
 C & E Loss (ft) * * Cum SA (acres) * 9.72 * 6.55 * 8.26 *

CULVERT RIVER: NE CANON DRAINAG

WACH: SUB-BASIN FROM N RS: 9.5

ULVERT OUTPUT Profile #100 YR.

Culvert ID : HIGH STREET

Culv Q (cfs) * 113.20 * Culv Vel In (ft/s) * 13.39 *
 # Barrels * 1 * Culv Vel Out (ft/s) * 14.31 *
 * Q Barrel (cfs) * 113.20 * Culv Inv El Up (ft) * 5429.00 *
 * W.S. US. (ft) * 5437.85 * Culv Inv El Dn (ft) * 5428.85 *
 E.G. US. (ft) * 5437.86 * Culv Frctn Ls (ft) * 2.15 *
 Delta WS (ft) * 9.83 * Culv Ext Lss (ft) * 5.29 *
 * Delta EG (ft) * 8.84 * Culv Ent Lss (ft) * 1.39 *

```

* E.G. IC (ft)      * 5437.86 * Q Weir (cfs)      * 812.86 *
* E.G. OC (ft)      * 5437.54 * Weir Sta Lft (ft)  * 7.81 *
* Culv WS In (ft)   * 5431.58 * Weir Sta Rgt (ft) * 708.26 *
* Culv WS Out (ft)  * 5431.14 * Weir Submerg      * 0.00 *
* Culv Nml Depth (ft) * 2.58 * Weir Max Depth (ft) * 1.07 *
* Culv Crt Depth (ft) * 2.58 * Weir Avg Depth (ft) * 0.57 *
* Culv Ful Lng (ft)  * 30.00 * Min Top Rd (ft)     * 5436.79 *
*****

```

Warning - During subcritical analysis, while trying to calculate culvert and weir flow, the program could not get a balance of energy within the specified tolerance and number of trials. The program used the solution with the minimum error.

Warning - Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

Note - Culvert critical depth exceeds the height of the culvert.

Note - The flow in the culvert is entirely supercritical.

CULVERT OUTPUT Profile #50 YR.

Culvert ID : HIGH STREET

```

*****
* Culv Q (cfs)      * 112.53 * Culv Vel In (ft/s) * 13.31 *
* # Barrels          * 1 * Culv Vel Out (ft/s)  * 14.20 *
* Q Barrel (cfs)    * 112.53 * Culv Inv El Up (ft) * 5429.00 *
* W.S. US. (ft)      * 5437.77 * Culv Inv El Dn (ft) * 5428.85 *
* E.G. US. (ft)      * 5437.78 * Culv Frctn Ls (ft) * 2.13 *
* Delta WS (ft)     * 10.06 * Culv Ext Lss (ft)  * 5.67 *
* Delta EG (ft)     * 9.18 * Culv Ent Lss (ft)  * 1.38 *
* E.G. IC (ft)       * 5437.78 * Q Weir (cfs)      * 627.47 *
* E.G. OC (ft)       * 5437.47 * Weir Sta Lft (ft) * 27.73 *
* Culv WS In (ft)   * 5431.58 * Weir Sta Rgt (ft) * 708.26 *
* Culv WS Out (ft)  * 5431.14 * Weir Submerg      * 0.00 *
* Culv Nml Depth (ft) * 2.58 * Weir Max Depth (ft) * 0.97 *
* Culv Crt Depth (ft) * 2.58 * Weir Avg Depth (ft) * 0.49 *
* Culv Ful Lng (ft)  * 30.00 * Min Top Rd (ft)     * 5436.79 *
*****

```

Warning - During subcritical analysis, while trying to calculate culvert and weir flow, the program could not get a balance of energy within the specified tolerance and number of trials. The program used the solution with the minimum error.

Warning - Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

Note - Culvert critical depth exceeds the height of the culvert.

Note - The flow in the culvert is entirely supercritical.

CULVERT OUTPUT Profile #10 YR.

Culvert ID : HIGH STREET

```

*****
* Culv Q (cfs)      * 110.67 * Culv Vel In (ft/s) * 13.09 *
* # Barrels          * 1 * Culv Vel Out (ft/s)  * 13.92 *
* Q Barrel (cfs)    * 110.67 * Culv Inv El Up (ft) * 5429.00 *
* W.S. US. (ft)      * 5437.54 * Culv Inv El Dn (ft) * 5428.85 *
* E.G. US. (ft)      * 5437.55 * Culv Frctn Ls (ft) * 2.06 *
* Delta WS (ft)     * 10.44 * Culv Ext Lss (ft)  * 6.44 *
* Delta EG (ft)     * 9.83 * Culv Ent Lss (ft)  * 1.33 *
* E.G. IC (ft)       * 5437.55 * Q Weir (cfs)      * 296.69 *
* E.G. OC (ft)       * 5437.27 * Weir Sta Lft (ft) * 71.09 *

```

```

Culv WS In (ft) * 5431.58 * Weir Sta Rgt (ft) * 708.26 *
* Culv WS Out (ft) * 5431.15 * Weir Submerg * 0.00 *
* Culv Nml Depth (ft) * 2.58 * Weir Max Depth (ft) * 0.75 *
Culv Crt Depth (ft) * 2.58 * Weir Avg Depth (ft) * 0.32 *
* Culv Ful Lngt (ft) * 30.00 * Min Top Rd (ft) * 5436.79 *
*****

```

Warning - During subcritical analysis, while trying to calculate culvert and weir flow, the program could not get a balance of energy within the specified tolerance and number of trials. The program used the solution with the minimum error.

Warning - Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

Note - Culvert critical depth exceeds the height of the culvert.

Note - The flow in the culvert is entirely supercritical.

CROSS SECTION RIVER: NE CANON DRAINAG

REACH: SUB-BASIN FROM N RS: 9

CROSS SECTION OUTPUT Profile #100 YR.

```

*****
W.S. Elev (ft) * 5428.02 * Element * Left OB * Channel * Right OB *
Vel Head (ft) * 0.99 * Wt. n-Val. * * 0.040 * *
* E.G. Elev (ft) * 5429.02 * Reach Len. (ft) * 921.60 * 738.87 * 563.85 *
* Crit W.S. (ft) * 5428.02 * Flow Area (sq ft) * * 115.75 * *
E.G. Slope (ft/ft) * 0.019118 * Area (sq ft) * * 115.75 * *
* Q Total (cfs) * 926.00 * Flow (cfs) * * 926.00 * *
* Top Width (ft) * 58.66 * Top Width (ft) * * 58.66 * *
Vel Total (ft/s) * 8.00 * Avg. Vel. (ft/s) * * 8.00 * *
Max Chl Dpth (ft) * 3.42 * Hydr. Depth (ft) * * 1.97 * *
* Conv. Total (cfs) * 6697.1 * Conv. (cfs) * * 6697.1 * *
Length Wtd. (ft) * 738.87 * Wetted Per. (ft) * * 59.54 * *
Min Ch El (ft) * 5424.60 * Shear (lb/sq ft) * * 2.32 * *
* Alpha * 1.00 * Stream Power (lb/ft s) * * 18.56 * *
* Frctn Loss (ft) * 9.97 * Cum Volume (acre-ft) * 22.70 * 16.09 * 27.49 *
C & E Loss (ft) * 0.15 * Cum SA (acres) * 15.26 * 7.06 * 10.43 *
*****

```

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The energy loss was greater than 1.0 ft (0.3 m) between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

CROSS SECTION OUTPUT Profile #50 YR.

```

*****
* W.S. Elev (ft) * 5427.71 * Element * Left OB * Channel * Right OB *
* Vel Head (ft) * 0.89 * Wt. n-Val. * * 0.040 * *
E.G. Elev (ft) * 5428.60 * Reach Len. (ft) * 921.60 * 738.87 * 563.85 *
* Crit W.S. (ft) * 5427.71 * Flow Area (sq ft) * * 97.60 * *
* E.G. Slope (ft/ft) * 0.020194 * Area (sq ft) * * 97.60 * *
Q Total (cfs) * 740.00 * Flow (cfs) * * 740.00 * *
Top Width (ft) * 55.91 * Top Width (ft) * * 55.91 * *
* Vel Total (ft/s) * 7.58 * Avg. Vel. (ft/s) * * 7.58 * *

```

Max Chl Dpth (ft)	*	3.11 * Hydr. Depth (ft)	*	*	1.75 *	*
* Conv. Total (cfs)	*	5207.4 * Conv. (cfs)	*	*	5207.4 *	*
* Length Wtd. (ft)	*	738.87 * Wetted Per. (ft)	*	*	56.71 *	*
Min Ch El (ft)	*	5424.60 * Shear (lb/sq ft)	*	*	2.17 *	*
* Alpha	*	1.00 * Stream Power (lb/ft s)	*	*	16.45 *	*
* Frctn Loss (ft)	*	10.73 * Cum Volume (acre-ft)	*	17.93 *	14.19 *	22.53 *
C & E Loss (ft)	*	0.13 * Cum SA (acres)	*	13.41 *	6.72 *	10.14 *

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #10 YR.

	*	Left OB	*	Channel	*	Right OB	*
W.S. Elev (ft)	*	5427.11 * Element	*	*	0.040 *	*	
Vel Head (ft)	*	0.61 * Wt. n-Val.	*	*	65.17 *	*	
* E.G. Elev (ft)	*	5427.71 * Reach Len. (ft)	*	*	563.85 *	*	
* Crit W.S. (ft)	*	5427.11 * Flow Area (sq ft)	*	*	408.00 *	*	
E.G. Slope (ft/ft)	*	0.021432 * Area (sq ft)	*	*	52.16 *	*	
Q Total (cfs)	*	2.51 * Hydr. Depth (ft)	*	*	1.25 *	*	
* Top Width (ft)	*	2.51 * Reach Len. (ft)	*	*	2787.0 *	*	
Vel Total (ft/s)	*	2.51 * Avg. Vel. (ft/s)	*	*	52.77 *	*	
Max Chl Dpth (ft)	*	2.51 * Shear (lb/sq ft)	*	*	1.65 *	*	
* Conv. Total (cfs)	*	1.00 * Stream Power (lb/ft s)	*	*	10.34 *	*	
* Length Wtd. (ft)	*	12.60 * Cum Volume (acre-ft)	*	10.85 *	10.25 *	12.50 *	
Min Ch El (ft)	*	0.08 * Cum SA (acres)	*	9.62 *	5.87 *	8.00 *	

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

CROSS SECTION RIVER: NE CANON DRAINAG ACH: SUB-BASIN FROM N RS: 8

CROSS SECTION OUTPUT Profile #100 YR.

	*	Left OB	*	Channel	*	Right OB	*
* W.S. Elev (ft)	*	5414.57 * Element	*	*	0.040 *	*	
Vel Head (ft)	*	0.50 * Wt. n-Val.	*	*	659.67 *	748.44 *	
E.G. Elev (ft)	*	5415.07 * Reach Len. (ft)	*	*	162.95 *	*	
* Crit W.S. (ft)	*	5414.19 * Flow Area (sq ft)	*	*	926.00 *	*	
E.G. Slope (ft/ft)	*	0.010022 * Area (sq ft)	*	*	84.76 *	*	
Q Total (cfs)	*	84.76 * Top Width (ft)	*	*	5.68 *	*	
* Top Width (ft)	*	5.68 * Avg. Vel. (ft/s)	*	*	5.68 *	*	
* Vel Total (ft/s)	*						

Max Chl Dpth (ft)	*	4.13 * Hydr. Depth (ft)	*	*	1.92 *	*
* Conv. Total (cfs)	*	9249.8 * Conv. (cfs)	*	*	9249.8 *	*
Length Wtd. (ft)	*	668.89 * Wetted Per. (ft)	*	*	86.27 *	*
Min Ch El (ft)	*	5410.44 * Shear (lb/sq ft)	*	*	1.18 *	*
* Alpha	*	1.00 * Stream Power (lb/ft s)	*	*	6.72 *	*
* Frctn Loss (ft)	*	5.26 * Cum Volume (acre-ft)	*	22.70 *	13.73 *	27.49 *
C & E Loss (ft)	*	0.01 * Cum SA (acres)	*	15.26 *	5.84 *	10.43 *

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

CROSS SECTION OUTPUT Profile #50 YR.

W.S. Elev (ft)	*	5414.27 * Element	*	Left OB	*	Channel	*	Right OB	*
* Vel Head (ft)	*	0.45 * Wt. n-Val.	*	*	*	0.040 *	*	*	
* E.G. Elev (ft)	*	5414.72 * Reach Len. (ft)	*	621.48 *	659.67 *	748.44 *	*	*	
Crit W.S. (ft)	*	*	*	*	137.55 *	*	*		
E.G. Slope (ft/ft)	*	0.010951 * Area (sq ft)	*	*	137.55 *	*	*		
* Q Total (cfs)	*	740.00 * Flow (cfs)	*	*	740.00 *	*	*		
Top Width (ft)	*	83.09 * Top Width (ft)	*	*	83.09 *	*	*		
Vel Total (ft/s)	*	5.38 * Avg. Vel. (ft/s)	*	*	5.38 *	*	*		
* Max Chl Dpth (ft)	*	3.83 * Hydr. Depth (ft)	*	*	1.66 *	*	*		
* Conv. Total (cfs)	*	7071.5 * Conv. (cfs)	*	*	7071.5 *	*	*		
Length Wtd. (ft)	*	667.40 * Wetted Per. (ft)	*	*	84.48 *	*	*		
Min Ch El (ft)	*	5410.44 * Shear (lb/sq ft)	*	*	1.11 *	*	*		
* Alpha	*	1.00 * Stream Power (lb/ft s)	*	*	5.99 *	*	*		
* Frctn Loss (ft)	*	5.32 * Cum Volume (acre-ft)	*	17.93 *	12.19 *	22.53 *	*		
C & E Loss (ft)	*	0.01 * Cum SA (acres)	*	13.41 *	5.54 *	10.14 *	*		

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #10 YR.

* W.S. Elev (ft)	*	5413.64 * Element	*	Left OB	*	Channel	*	Right OB	*
* Vel Head (ft)	*	0.34 * Wt. n-Val.	*	*	*	0.040 *	*	*	
E.G. Elev (ft)	*	5413.98 * Reach Len. (ft)	*	621.48 *	659.67 *	748.44 *	*		
* Crit W.S. (ft)	*	5413.47 * Flow Area (sq ft)	*	*	86.95 *	*	*		
* E.G. Slope (ft/ft)	*	0.013886 * Area (sq ft)	*	*	86.95 *	*	*		
Q Total (cfs)	*	408.00 * Flow (cfs)	*	*	408.00 *	*	*		
Top Width (ft)	*	77.15 * Top Width (ft)	*	*	77.15 *	*	*		
* Vel Total (ft/s)	*	4.69 * Avg. Vel. (ft/s)	*	*	4.69 *	*	*		
Max Chl Dpth (ft)	*	3.20 * Hydr. Depth (ft)	*	*	1.13 *	*	*		
Conv. Total (cfs)	*	3462.4 * Conv. (cfs)	*	*	3462.4 *	*	*		
* Length Wtd. (ft)	*	663.26 * Wetted Per. (ft)	*	*	78.34 *	*	*		
Min Ch El (ft)	*	5410.44 * Shear (lb/sq ft)	*	*	0.96 *	*	*		
Alpha	*	1.00 * Stream Power (lb/ft s)	*	*	4.51 *	*	*		
* Frctn Loss (ft)	*	5.52 * Cum Volume (acre-ft)	*	10.85 *	8.96 *	12.50 *	*		
C & E Loss (ft)	*	0.00 * Cum SA (acres)	*	9.62 *	4.77 *	8.00 *	*		

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - The parabolic search method failed to converge on critical depth. The program will try the

cross section slice/secant method to find critical depth.

CROSS SECTION RIVER: NE CANON DRAINAG

REACH: SUB-BASIN FROM N RS: 7

CROSS SECTION OUTPUT Profile #100 YR.

	*	5409.34	*	Element	*	Left OB	*	Channel	*	Right OB	*
* W.S. Elev (ft)	*	0.46	*	Wt. n-Val.	*	*	*	0.040	*	0.060	*
Vel Head (ft)	*	5409.80	*	Reach Len. (ft)	*	1000.00	*	988.80	*	1029.20	*
E.G. Elev (ft)	*	5408.63	*	Flow Area (sq ft)	*	*	*	122.62	*	75.41	*
* Crit W.S. (ft)	*	0.006272	*	Area (sq ft)	*	*	*	122.62	*	75.41	*
+ E.G. Slope (ft/ft)	*	926.00	*	Flow (cfs)	*	*	*	733.67	*	192.33	*
Q Total (cfs)	*	90.44	*	Top Width (ft)	*	*	*	39.88	*	50.56	*
* Top Width (ft)	*	4.68	*	Avg. Vel. (ft/s)	*	*	*	5.98	*	2.55	*
* Vel Total (ft/s)	*	5.99	*	Hydr. Depth (ft)	*	*	*	3.07	*	1.49	*
Max Chl Dpth (ft)	*	11692.8	*	Conv. (cfs)	*	*	*	9264.2	*	2428.6	*
Conv. Total (cfs)	*	993.00	*	Wetted Per. (ft)	*	*	*	42.28	*	50.85	*
* Length Wtd. (ft)	*	5403.35	*	Shear (lb/sq ft)	*	*	*	1.14	*	0.58	*
Min Ch El (ft)	*	1.36	*	Stream Power (lb/ft s)	*	*	*	6.79	*	1.48	*
Alpha	*	10.59	*	Cum Volume (acre-ft)	*	22.70	*	11.57	*	26.84	*
* Frctn Loss (ft)	*	0.02	*	Cum SA (acres)	*	15.26	*	4.90	*	10.00	*

Warning - Divided flow computed for this cross-section.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #50 YR.

	*	5408.96	*	Element	*	Left OB	*	Channel	*	Right OB	*
* W.S. Elev (ft)	*	0.42	*	Wt. n-Val.	*	*	*	0.040	*	0.060	*
Vel Head (ft)	*	5409.39	*	Reach Len. (ft)	*	1000.00	*	988.80	*	1029.20	*
* E.G. Elev (ft)	*	5408.31	*	Flow Area (sq ft)	*	*	*	108.18	*	57.45	*
Crit W.S. (ft)	*	0.006134	*	Area (sq ft)	*	*	*	108.18	*	57.45	*
E.G. Slope (ft/ft)	*	740.00	*	Flow (cfs)	*	*	*	611.11	*	128.89	*
* Q Total (cfs)	*	83.71	*	Top Width (ft)	*	*	*	37.75	*	45.96	*
* Top Width (ft)	*	4.47	*	Avg. Vel. (ft/s)	*	*	*	5.65	*	2.24	*
Vel Total (ft/s)	*	5.61	*	Hydr. Depth (ft)	*	*	*	2.87	*	1.25	*
Max Chl Dpth (ft)	*	9448.4	*	Conv. (cfs)	*	*	*	7802.8	*	1645.7	*
Conv. Total (cfs)	*	992.32	*	Wetted Per. (ft)	*	*	*	39.99	*	46.19	*
Length Wtd. (ft)	*	5403.35	*	Shear (lb/sq ft)	*	*	*	1.04	*	0.48	*
Min Ch El (ft)	*	1.36	*	Stream Power (lb/ft s)	*	*	*	5.85	*	1.07	*
Alpha	*	10.46	*	Cum Volume (acre-ft)	*	17.93	*	10.33	*	22.04	*
* Frctn Loss (ft)	*	0.02	*	Cum SA (acres)	*	13.41	*	4.63	*	9.75	*

Warning - Divided flow computed for this cross-section.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #10 YR.

	*	5408.13	*	Element	*	Left OB	*	Channel	*	Right OB	*
* W.S. Elev (ft)	*	0.33	*	Wt. n-Val.	*	*	*	0.040	*	0.060	*

E.G. Elev (ft)	* 5408.46 * Reach Len. (ft)	* 1000.00 *	988.80 *	1029.20 *
* Crit W.S. (ft)	* 5407.31 * Flow Area (sq ft)	* *	78.66 *	23.49 *
E.G. Slope (ft/ft)	* 0.005557 * Area (sq ft)	* *	78.66 *	23.49 *
Q Total (cfs)	* 408.00 * Flow (cfs)	* *	375.00 *	33.00 *
* Top Width (ft)	* 68.26 * Top Width (ft)	* *	32.96 *	35.30 *
* Vel Total (ft/s)	* 3.99 * Avg. Vel. (ft/s)	* *	4.77 *	1.40 *
Max Chl Dpth (ft)	* 4.78 * Hydr. Depth (ft)	* *	2.39 *	0.67 *
Conv. Total (cfs)	* 5473.3 * Conv. (cfs)	* *	5030.5 *	442.8 *
* Length Wtd. (ft)	* 990.43 * Wetted Per. (ft)	* *	34.82 *	35.40 *
Min Ch El (ft)	* 5403.35 * Shear (lb/sq ft)	* *	0.78 *	0.23 *
Alpha	* 1.32 * Stream Power (lb/ft s)	* *	3.74 *	0.32 *
* Frctn Loss (ft)	* 10.17 * Cum Volume (acre-ft)	* 10.85 *	7.70 *	12.30 *
* C & E Loss (ft)	* 0.01 * Cum SA (acres)	* 9.62 *	3.94 *	7.69 *

Warning - Divided flow computed for this cross-section.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION RIVER: NE CANON DRAINAG

REACH: SUB-BASIN FROM N RS: 6

CROSS SECTION OUTPUT Profile #100 YR.

W.S. Elev (ft)	* 5398.52 * Element	* Left OB *	Channel *	Right OB *
* Vel Head (ft)	* 0.66 * Wt. n-Val.	* *	0.040 *	*
E.G. Elev (ft)	* 5399.19 * Reach Len. (ft)	* 225.86 *	492.60 *	258.94 *
Crit W.S. (ft)	* 5398.52 * Flow Area (sq ft)	* *	141.55 *	*
* E.G. Slope (ft/ft)	* 0.022028 * Area (sq ft)	* *	141.55 *	*
* Q Total (cfs)	* 926.00 * Flow (cfs)	* *	926.00 *	*
Top Width (ft)	* 108.77 * Top Width (ft)	* *	108.77 *	*
Vel Total (ft/s)	* 6.54 * Avg. Vel. (ft/s)	* *	6.54 *	*
* Max Chl Dpth (ft)	* 3.85 * Hydr. Depth (ft)	* *	1.30 *	*
Conv. Total (cfs)	* 6239.1 * Conv. (cfs)	* *	6239.1 *	*
Length Wtd. (ft)	* 446.16 * Wetted Per. (ft)	* *	109.51 *	*
Min Ch El (ft)	* 5394.67 * Shear (lb/sq ft)	* *	1.78 *	*
Alpha	* 1.00 * Stream Power (lb/ft s)	* *	11.63 *	*
Frctn Loss (ft)	* 0.15 * Cum Volume (acre-ft)	* 22.70 *	8.57 *	25.95 *
* C & E Loss (ft)	* 0.20 * Cum SA (acres)	* 15.26 *	3.21 *	9.40 *

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #50 YR.

W.S. Elev (ft)	* 5398.28 * Element	* Left OB *	Channel *	Right OB *
Vel Head (ft)	* 0.62 * Wt. n-Val.	* *	0.040 *	*

* I.G. Elev (ft)	* 5398.90 * Reach Len. (ft)	* 225.86 *	492.60 *	258.94 *
* Crit W.S. (ft)	* 5398.28 * Flow Area (sq ft)	* *	117.17 *	*
* E.G. Slope (ft/ft)	* 0.022332 * Area (sq ft)	* *	117.17 *	*
* Q Total (cfs)	* 740.00 * Flow (cfs)	* *	740.00 *	*
* Top Width (ft)	* 95.83 * Top Width (ft)	* *	95.83 *	*
* Vel Total (ft/s)	* 6.32 * Avg. Vel. (ft/s)	* *	6.32 *	*
* Max Chl Dpth (ft)	* 3.61 * Hydr. Depth (ft)	* *	1.22 *	*
* Conv. Total (cfs)	* 4951.8 * Conv. (cfs)	* *	4951.8 *	*
* Length Wtd. (ft)	* 449.59 * Wetted Per. (ft)	* *	96.55 *	*
* Min Ch El (ft)	* 5394.67 * Shear (lb/sq ft)	* *	1.69 *	*
Alpha	* 1.00 * Stream Power (lb/ft s)	* *	10.69 *	*
* Frctn Loss (ft)	* 0.12 * Cum Volume (acre-ft)	* 17.93 *	7.77 *	21.36 *
* C & E Loss (ft)	* 0.18 * Cum SA (acres)	* 13.41 *	3.11 *	9.20 *

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

DSS SECTION OUTPUT Profile #10 YR.

* W.S. Elev (ft)	* 5397.80 * Element	* Left OB *	Channel *	Right OB *
* Vel Head (ft)	* 0.47 * Wt. n-Val.	* *	0.040 *	*
* E.G. Elev (ft)	* 5398.27 * Reach Len. (ft)	* 225.86 *	492.60 *	258.94 *
* Crit W.S. (ft)	* 5397.80 * Flow Area (sq ft)	* *	74.12 *	*
* E.G. Slope (ft/ft)	* 0.024982 * Area (sq ft)	* *	74.12 *	*
* Q Total (cfs)	* 408.00 * Flow (cfs)	* *	408.00 *	*
* Top Width (ft)	* 80.97 * Top Width (ft)	* *	80.97 *	*
* Vel Total (ft/s)	* 5.50 * Avg. Vel. (ft/s)	* *	5.50 *	*
* Max Chl Dpth (ft)	* 3.13 * Hydr. Depth (ft)	* *	0.92 *	*
* Conv. Total (cfs)	* 2581.4 * Conv. (cfs)	* *	2581.4 *	*
* Length Wtd. (ft)	* 458.30 * Wetted Per. (ft)	* *	81.64 *	*
* Min Ch El (ft)	* 5394.67 * Shear (lb/sq ft)	* *	1.42 *	*
Alpha	* 1.00 * Stream Power (lb/ft s)	* *	7.79 *	*
* Frctn Loss (ft)	* 0.06 * Cum Volume (acre-ft)	* 10.85 *	5.97 *	12.03 *
* C & E Loss (ft)	* 0.14 * Cum SA (acres)	* 9.62 *	2.65 *	7.28 *

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION RIVER: NE CANON DRAINAG

ACH: SUB-BASIN FROM N RS: 5.8

CROSS SECTION OUTPUT Profile #100 YR.

	*	Element	*	Left OB	*	Channel	*	Right OB	*
W.S. Elev (ft)	*	5396.97	*	0.060	*	0.040	*	0.060	*
Vel Head (ft)	*	0.01	*	Wt. n-Val.	*	83.16	*	83.32	*
* E.G. Elev (ft)	*	5396.98	*	Reach Len. (ft)	*	193.46	*	474.94	*
* Crit W.S. (ft)	*	5391.63	*	Flow Area (sq ft)	*	193.46	*	474.94	*
E.G. Slope (ft/ft)	*	0.000097	*	Area (sq ft)	*	62.07	*	566.73	*
* Q Total (cfs)	*	926.00	*	Flow (cfs)	*	127.26	*	77.71	*
* Top Width (ft)	*	607.56	*	Top Width (ft)	*	0.32	*	1.19	*
Vel Total (ft/s)	*	0.64	*	Avg. Vel. (ft/s)	*	1.52	*	6.11	*
Max Chl Dpth (ft)	*	9.62	*	Hydr. Depth (ft)	*	6309.4	*	57610.3	*
* Conv. Total (cfs)	*	94131.2	*	Conv. (cfs)	*	128.02	*	80.49	*
Length Wtd. (ft)	*	83.32	*	Wetted Per. (ft)	*	0.01	*	0.04	*
Min Ch El (ft)	*	5387.35	*	Shear (lb/sq ft)	*	0.00	*	0.04	*
* Alpha	*	2.27	*	Stream Power (lb/ft s)	*	22.20	*	5.08	*
* Frctn Loss (ft)	*		*	Cum Volume (acre-ft)	*	14.93	*	2.16	*
* C & E Loss (ft)	*		*	Cum SA (acres)	*	13.08	*	2.13	*

CROSS SECTION OUTPUT Profile #50 YR.

	*	Element	*	Left OB	*	Channel	*	Right OB	*
* W.S. Elev (ft)	*	5396.78	*	0.060	*	0.040	*	0.060	*
Vel Head (ft)	*	0.01	*	Wt. n-Val.	*	83.16	*	83.32	*
E.G. Elev (ft)	*	5396.80	*	Reach Len. (ft)	*	169.97	*	460.59	*
* Crit W.S. (ft)	*	5391.24	*	Flow Area (sq ft)	*	169.97	*	460.59	*
* E.G. Slope (ft/ft)	*	0.000075	*	Area (sq ft)	*	44.06	*	473.84	*
Q Total (cfs)	*	740.00	*	Flow (cfs)	*	127.26	*	77.71	*
Top Width (ft)	*	606.11	*	Top Width (ft)	*	0.26	*	1.03	*
* Vel Total (ft/s)	*	0.55	*	Avg. Vel. (ft/s)	*	1.34	*	5.93	*
Max Chl Dpth (ft)	*	9.43	*	Hydr. Depth (ft)	*	5089.9	*	54739.9	*
Conv. Total (cfs)	*	85488.2	*	Conv. (cfs)	*	127.84	*	80.49	*
* Length Wtd. (ft)	*	83.32	*	Wetted Per. (ft)	*	0.01	*	0.03	*
* Min Ch El (ft)	*	5387.35	*	Shear (lb/sq ft)	*	0.00	*	0.03	*
Alpha	*	2.33	*	Stream Power (lb/ft s)	*	17.49	*	4.51	*
* Frctn Loss (ft)	*		*	Cum Volume (acre-ft)	*	13.08	*	2.13	*
* C & E Loss (ft)	*		*	Cum SA (acres)	*	10.54	*	3.12	*

CROSS SECTION OUTPUT Profile #10 YR.

	*	Element	*	Left OB	*	Channel	*	Right OB	*
W.S. Elev (ft)	*	5396.38	*	0.060	*	0.040	*	0.060	*
* Vel Head (ft)	*	0.01	*	Wt. n-Val.	*	83.16	*	83.32	*
* E.G. Elev (ft)	*	5396.38	*	Reach Len. (ft)	*	119.27	*	429.14	*
Crit W.S. (ft)	*	5390.24	*	Flow Area (sq ft)	*	119.27	*	429.14	*
* E.G. Slope (ft/ft)	*	0.000036	*	Area (sq ft)	*	17.74	*	290.71	*
* Q Total (cfs)	*	408.00	*	Flow (cfs)	*	118.12	*	77.71	*
Top Width (ft)	*	596.35	*	Top Width (ft)	*	0.15	*	0.68	*
Vel Total (ft/s)	*	0.37	*	Avg. Vel. (ft/s)	*	1.01	*	5.52	*
* Max Chl Dpth (ft)	*	9.03	*	Hydr. Depth (ft)	*	2968.2	*	48652.1	*
* Conv. Total (cfs)	*	68281.2	*	Conv. (cfs)	*	118.41	*	80.49	*
Length Wtd. (ft)	*	83.32	*	Wetted Per. (ft)	*	0.00	*	0.01	*
* Min Ch El (ft)	*	5387.35	*	Shear (lb/sq ft)	*	0.00	*	0.01	*
Alpha	*	2.42	*	Stream Power (lb/ft s)	*	10.54	*	3.12	*
* Frctn Loss (ft)	*		*	Cum Volume (acre-ft)	*	9.31	*	1.75	*
* C & E Loss (ft)	*		*	Cum SA (acres)	*	10.40	*	6.09	*

LVERT

RIVER: NE CANON DRAINAG

REACH: SUB-BASIN FROM N RS: 5.5

CULVERT OUTPUT Profile #100 YR.

Culvert ID : SOUTH STREET

```
*****
Culv Q (cfs) * 213.79 * Culv Vel In (ft/s) * 10.89 *
* # Barrels * 1 * Culv Vel Out (ft/s) * 10.89 *
* Q Barrel (cfs) * 213.79 * Culv Inv El Up (ft) * 5387.35 *
* W.S. US. (ft) * 5396.97 * Culv Inv El Dn (ft) * 5386.70 *
* E.G. US. (ft) * 5396.98 * Culv Frctn Ls (ft) * 1.49 *
* Delta WS (ft) * 4.24 * Culv Ext Lss (ft) * 1.43 *
* Delta EG (ft) * 3.85 * Culv Ent Lss (ft) * 0.92 *
* E.G. IC (ft) * 5395.27 * Q Weir (cfs) * 712.21 *
* E.G. OC (ft) * 5396.98 * Weir Sta Lft (ft) * 264.75 *
* Culv WS In (ft) * 5392.35 * Weir Sta Rgt (ft) * 607.56 *
* Culv WS Out (ft) * 5391.70 * Weir Submerg * 0.00 *
* Culv Nml Depth (ft) * * Weir Max Depth (ft) * 1.19 *
* Culv Crt Depth (ft) * 4.16 * Weir Avg Depth (ft) * 0.83 *
* Culv Ful Lngh (ft) * 65.00 * Min Top Rd (ft) * 5395.78 *
*****
```

CULVERT OUTPUT Profile #50 YR.

Culvert ID : SOUTH STREET

```
*****
Culv Q (cfs) * 218.81 * Culv Vel In (ft/s) * 11.14 *
* # Barrels * 1 * Culv Vel Out (ft/s) * 11.14 *
* Q Barrel (cfs) * 218.81 * Culv Inv El Up (ft) * 5387.35 *
* W.S. US. (ft) * 5396.78 * Culv Inv El Dn (ft) * 5386.70 *
* E.G. US. (ft) * 5396.80 * Culv Frctn Ls (ft) * 1.56 *
* Delta WS (ft) * 4.45 * Culv Ext Lss (ft) * 1.60 *
* Delta EG (ft) * 4.13 * Culv Ent Lss (ft) * 0.96 *
* E.G. IC (ft) * 5395.48 * Q Weir (cfs) * 521.19 *
* E.G. OC (ft) * 5396.80 * Weir Sta Lft (ft) * 285.26 *
* Culv WS In (ft) * 5392.35 * Weir Sta Rgt (ft) * 607.35 *
* Culv WS Out (ft) * 5391.70 * Weir Submerg * 0.00 *
* Culv Nml Depth (ft) * * Weir Max Depth (ft) * 1.02 *
* Culv Crt Depth (ft) * 4.20 * Weir Avg Depth (ft) * 0.70 *
* Culv Ful Lngh (ft) * 65.00 * Min Top Rd (ft) * 5395.78 *
*****
```

CULVERT OUTPUT Profile #10 YR.

Culvert ID : SOUTH STREET

```
*****
* Culv Q (cfs) * 229.21 * Culv Vel In (ft/s) * 11.67 *
* # Barrels * 1 * Culv Vel Out (ft/s) * 11.91 *
* Q Barrel (cfs) * 229.21 * Culv Inv El Up (ft) * 5387.35 *
* W.S. US. (ft) * 5396.38 * Culv Inv El Dn (ft) * 5386.70 *
* E.G. US. (ft) * 5396.38 * Culv Frctn Ls (ft) * 1.69 *
* Delta WS (ft) * 4.94 * Culv Ext Lss (ft) * 2.02 *
* Delta EG (ft) * 4.76 * Culv Ent Lss (ft) * 1.06 *
* E.G. IC (ft) * 5395.94 * Q Weir (cfs) * 178.79 *
* E.G. OC (ft) * 5396.38 * Weir Sta Lft (ft) * 341.52 *
* Culv WS In (ft) * 5392.35 * Weir Sta Rgt (ft) * 606.09 *
* Culv WS Out (ft) * 5391.44 * Weir Submerg * 0.00 *
* Culv Nml Depth (ft) * 5.00 * Weir Max Depth (ft) * 0.61 *
* Culv Crt Depth (ft) * 4.28 * Weir Avg Depth (ft) * 0.39 *
* Culv Ful Lngh (ft) * 52.45 * Min Top Rd (ft) * 5395.78 *
*****
```

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

CROSS SECTION RIVER: NE CANON DRAINAG

EACH: SUB-BASIN FROM N RS: 5

CROSS SECTION OUTPUT Profile #100 YR.

	*	Left OB	*	Channel	*	Right OB	*
* W.S. Elev (ft)	*	5392.73	*	Element	*		
* Vel Head (ft)	*	0.41	*	Wt. n-Val.	*	0.040	*
E.G. Elev (ft)	*	5393.14	*	Reach Len. (ft)	*	295.74	*
Crit W.S. (ft)	*		*	Flow Area (sq ft)	*	180.37	*
* E.G. Slope (ft/ft)	*	0.004176	*	Area (sq ft)	*	180.37	*
Q Total (cfs)	*	926.00	*	Flow (cfs)	*	926.00	*
Top Width (ft)	*	53.43	*	Top Width (ft)	*	53.43	*
* Vel Total (ft/s)	*	5.13	*	Avg. Vel. (ft/s)	*	5.13	*
* Max Chl Dpth (ft)	*	6.53	*	Hydr. Depth (ft)	*	3.38	*
Conv. Total (cfs)	*	14329.6	*	Conv. (cfs)	*	14329.6	*
* Length Wtd. (ft)	*	295.84	*	Wetted Per. (ft)	*	57.67	*
* Min Ch El (ft)	*	5386.20	*	Shear (lb/sq ft)	*	0.82	*
Alpha	*	1.00	*	Stream Power (lb/ft s)	*	4.19	*
Frctn Loss (ft)	*	2.22	*	Cum Volume (acre-ft)	*	4.46	*
* C & E Loss (ft)	*	0.03	*	Cum SA (acres)	*	14.81	*
						2.03	*
						7.82	*

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #50 YR.

	*	Left OB	*	Channel	*	Right OB	*
* W.S. Elev (ft)	*	5392.34	*	Element	*		
* Vel Head (ft)	*	0.33	*	Wt. n-Val.	*	0.040	*
E.G. Elev (ft)	*	5392.67	*	Reach Len. (ft)	*	295.74	*
* Crit W.S. (ft)	*		*	Flow Area (sq ft)	*	160.16	*
* E.G. Slope (ft/ft)	*	0.003693	*	Area (sq ft)	*	160.16	*
Q Total (cfs)	*	740.00	*	Flow (cfs)	*	740.00	*
Top Width (ft)	*	50.58	*	Top Width (ft)	*	50.58	*
* Vel Total (ft/s)	*	4.62	*	Avg. Vel. (ft/s)	*	4.62	*
Max Chl Dpth (ft)	*	6.14	*	Hydr. Depth (ft)	*	3.17	*
Conv. Total (cfs)	*	12176.3	*	Conv. (cfs)	*	12176.3	*
* Length Wtd. (ft)	*	295.74	*	Wetted Per. (ft)	*	54.71	*
* Min Ch El (ft)	*	5386.20	*	Shear (lb/sq ft)	*	0.68	*
Alpha	*	1.00	*	Stream Power (lb/ft s)	*	3.12	*
Frctn Loss (ft)	*	2.07	*	Cum Volume (acre-ft)	*	3.91	*
* C & E Loss (ft)	*	0.03	*	Cum SA (acres)	*	12.96	*
						2.01	*
						7.63	*

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #10 YR.

	*	Left OB	*	Channel	*	Right OB	*
* W.S. Elev (ft)	*	5391.44	*	Element	*		
Vel Head (ft)	*	0.19	*	Wt. n-Val.	*	0.040	*
E.G. Elev (ft)	*	5391.62	*	Reach Len. (ft)	*	295.74	*
* Crit W.S. (ft)	*		*	Flow Area (sq ft)	*	117.39	*
* E.G. Slope (ft/ft)	*	0.002643	*	Area (sq ft)	*	117.39	*

Q Total (cfs)	*	408.00 * Flow (cfs)	*	*	408.00 *	*
* Top Width (ft)	*	43.94 * Top Width (ft)	*	*	43.94 *	*
* Vel Total (ft/s)	*	3.48 * Avg. Vel. (ft/s)	*	*	3.48 *	*
Max Chl Dpth (ft)	*	5.24 * Hydr. Depth (ft)	*	*	2.67 *	*
* Conv. Total (cfs)	*	7935.6 * Conv. (cfs)	*	*	7935.6 *	*
* Length Wtd. (ft)	*	295.74 * Wetted Per. (ft)	*	*	47.82 *	*
Min Ch El (ft)	*	5386.20 * Shear (lb/sq ft)	*	*	0.41 *	*
Alpha	*	1.00 * Stream Power (lb/ft s)	*	*	1.41 *	*
* Frctn Loss (ft)	*	1.76 * Cum Volume (acre-ft)	*	10.43 *	2.60 *	9.88 *
C & E Loss (ft)	*	0.04 * Cum SA (acres)	*	9.20 *	1.63 *	5.70 *

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

ROSS SECTION RIVER: NE CANON DRAINAG
REACH: SUB-BASIN FROM N RS: 4

CROSS SECTION OUTPUT Profile #100 YR.

W.S. Elev (ft)	*	5390.20 * Element	*	Left OB	Channel	Right OB *
Vel Head (ft)	*	0.69 * Wt. n-Val.	*	0.060 *	0.040 *	0.060 *
* E.G. Elev (ft)	*	5390.89 * Reach Len. (ft)	*	897.07 *	965.75 *	906.29 *
Crit W.S. (ft)	*	5390.14 * Flow Area (sq ft)	*	1.37 *	138.84 *	0.40 *
E.G. Slope (ft/ft)	*	0.017363 * Area (sq ft)	*	1.37 *	138.84 *	0.40 *
* Q Total (cfs)	*	926.00 * Flow (cfs)	*	0.97 *	924.75 *	0.28 *
* Top Width (ft)	*	108.32 * Top Width (ft)	*	18.30 *	86.11 *	3.92 *
Vel Total (ft/s)	*	6.59 * Avg. Vel. (ft/s)	*	0.71 *	6.66 *	0.71 *
* Max Chl Dpth (ft)	*	4.20 * Hydr. Depth (ft)	*	0.07 *	1.61 *	0.10 *
* Conv. Total (cfs)	*	7027.4 * Conv. (cfs)	*	7.4 *	7017.9 *	2.2 *
Length Wtd. (ft)	*	945.05 * Wetted Per. (ft)	*	18.30 *	87.48 *	3.92 *
Min Ch El (ft)	*	5386.00 * Shear (lb/sq ft)	*	0.08 *	1.72 *	0.11 *
* Alpha	*	1.02 * Stream Power (lb/ft s)	*	0.06 *	11.46 *	0.08 *
* Frctn Loss (ft)	*	13.03 * Cum Volume (acre-ft)	*	22.01 *	3.37 *	22.87 *
C & E Loss (ft)	*	0.10 * Cum SA (acres)	*	14.70 *	1.56 *	7.81 *

Warning - Divided flow computed for this cross-section.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

CROSS SECTION OUTPUT Profile #50 YR.

* W.S. Elev (ft)	*	5389.98 * Element	*	Left OB	Channel	Right OB *
* Vel Head (ft)	*	0.60 * Wt. n-Val.	*	*	0.040 *	*
E.G. Elev (ft)	*	5390.57 * Reach Len. (ft)	*	897.07 *	965.75 *	906.29 *
Crit W.S. (ft)	*	5389.90 * Flow Area (sq ft)	*	*	119.51 *	*
* E.G. Slope (ft/ft)	*	0.018095 * Area (sq ft)	*	*	119.51 *	*
* Q Total (cfs)	*	740.00 * Flow (cfs)	*	*	740.00 *	*
Top Width (ft)	*	85.28 * Top Width (ft)	*	*	85.28 *	*
* Vel Total (ft/s)	*	6.19 * Avg. Vel. (ft/s)	*	*	6.19 *	*
* Max Chl Dpth (ft)	*	3.98 * Hydr. Depth (ft)	*	*	1.40 *	*
Conv. Total (cfs)	*	5501.1 * Conv. (cfs)	*	*	5501.1 *	*
* Length Wtd. (ft)	*	946.51 * Wetted Per. (ft)	*	*	86.65 *	*
* Min Ch El (ft)	*	5386.00 * Shear (lb/sq ft)	*	*	1.56 *	*

Alpha	*	1.00 * Stream Power (lb/ft s)	*	9.65 *	*	
* Frctn Loss (ft)	*	12.90 * Cum Volume (acre-ft)	*	17.33 *	2.96 *	18.57 *
* C & E Loss (ft)	*	0.08 * Cum SA (acres)	*	12.96 *	1.55 *	7.63 *

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

OSS SECTION OUTPUT Profile #10 YR.

* W.S. Elev (ft)	*	5389.28 * Element	*	Left OB *	Channel *	Right OB *
Vel Head (ft)	*	0.55 * Wt. n-Val.	*	*	0.040 *	*
E.G. Elev (ft)	*	5389.83 * Reach Len. (ft)	*	897.07 *	965.75 *	906.29 *
* Crit W.S. (ft)	*	5389.27 * Flow Area (sq ft)	*	*	68.69 *	*
E.G. Slope (ft/ft)	*	0.023546 * Area (sq ft)	*	*	68.69 *	*
Q Total (cfs)	*	408.00 * Flow (cfs)	*	*	408.00 *	*
* Top Width (ft)	*	63.26 * Top Width (ft)	*	*	63.26 *	*
* Vel Total (ft/s)	*	5.94 * Avg. Vel. (ft/s)	*	*	5.94 *	*
Max Chl Dpth (ft)	*	3.28 * Hydr. Depth (ft)	*	*	1.09 *	*
* Conv. Total (cfs)	*	2658.9 * Conv. (cfs)	*	*	2658.9 *	*
* Length Wtd. (ft)	*	951.07 * Wetted Per. (ft)	*	*	64.58 *	*
Min Ch El (ft)	*	5386.00 * Shear (lb/sq ft)	*	*	1.56 *	*
Alpha	*	1.00 * Stream Power (lb/ft s)	*	*	9.29 *	*
* Frctn Loss (ft)	*	12.49 * Cum Volume (acre-ft)	*	10.43 *	1.97 *	9.88 *
* C & E Loss (ft)	*	0.08 * Cum SA (acres)	*	9.20 *	1.27 *	5.70 *

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

OSS SECTION RIVER: NE CANON DRAINAG

REACH: SUB-BASIN FROM N RS: 3

CROSS SECTION OUTPUT Profile #100 YR.

W.S. Elev (ft)	*	5377.40 * Element	*	Left OB *	Channel *	Right OB *
Vel Head (ft)	*	0.36 * Wt. n-Val.	*	0.060 *	0.040 *	0.060 *
* E.G. Elev (ft)	*	5377.76 * Reach Len. (ft)	*	1376.63 *	575.56 *	416.06 *
Crit W.S. (ft)	*	5377.40 * Flow Area (sq ft)	*	232.53 *	50.31 *	30.38 *
E.G. Slope (ft/ft)	*	0.011274 * Area (sq ft)	*	232.53 *	50.31 *	30.38 *
* Q Total (cfs)	*	926.00 * Flow (cfs)	*	507.70 *	361.46 *	56.85 *
* Top Width (ft)	*	377.96 * Top Width (ft)	*	307.33 *	20.03 *	50.60 *
Vel Total (ft/s)	*	2.96 * Avg. Vel. (ft/s)	*	2.18 *	7.18 *	1.87 *
Max Chl Dpth (ft)	*	3.40 * Hydr. Depth (ft)	*	0.76 *	2.51 *	0.60 *
* Conv. Total (cfs)	*	8721.1 * Conv. (cfs)	*	4781.5 *	3404.2 *	535.4 *
Length Wtd. (ft)	*	728.18 * Wetted Per. (ft)	*	307.34 *	20.47 *	50.63 *
Min Ch El (ft)	*	5374.00 * Shear (lb/sq ft)	*	0.53 *	1.73 *	0.42 *
* Alpha	*	2.63 * Stream Power (lb/ft s)	*	1.16 *	12.43 *	0.79 *
* Frctn Loss (ft)	*	0.11 * Cum Volume (acre-ft)	*	19.60 *	1.28 *	22.55 *
* C & E Loss (ft)	*	0.11 * Cum SA (acres)	*	11.35 *	0.38 *	7.24 *

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less

than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross

section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #50 YR.

```
*****  
* W.S. Elev (ft)      * 5377.26 * Element      * Left OB * Channel * Right OB *  
* Vel Head (ft)       * 0.34 * Wt. n-Val.      * 0.060 * 0.040 * 0.060 *  
* E.G. Elev (ft)       * 5377.60 * Reach Len. (ft)  * 1376.63 * 575.56 * 416.06 *  
* Crit W.S. (ft)       * 5377.26 * Flow Area (sq ft) * 191.72 * 47.55 * 24.06 *  
* E.G. Slope (ft/ft)    * 0.010637 * Area (sq ft)   * 191.72 * 47.55 * 24.06 *  
* Q Total (cfs)        * 740.00 * Flow (cfs)      * 377.53 * 319.61 * 42.86 *  
* Top Width (ft)        * 344.53 * Top Width (ft)  * 283.23 * 20.03 * 41.27 *  
* Vel Total (ft/s)      * 2.81 * Avg. Vel. (ft/s) * 1.97 * 6.72 * 1.78 *  
* Max Chl Dpth (ft)     * 3.26 * Hydr. Depth (ft) * 0.68 * 2.37 * 0.58 *  
* Conv. Total (cfs)      * 7175.0 * Conv. (cfs)    * 3660.5 * 3098.9 * 415.6 *  
* Length Wtd. (ft)       * 703.93 * Wetted Per. (ft) * 283.24 * 20.47 * 41.30 *  
* Min Ch El (ft)        * 5374.00 * Shear (lb/sq ft) * 0.45 * 1.54 * 0.39 *  
* Alpha                 * 2.74 * Stream Power (lb/ft s) * 0.89 * 10.37 * 0.69 *  
* Frctn Loss (ft)        * 0.12 * Cum Volume (acre-ft) * 15.35 * 1.11 * 18.32 *  
* C & E Loss (ft)        * 0.10 * Cum SA (acres)   * 10.04 * 0.38 * 7.20 *  
*****
```

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

CROSS SECTION OUTPUT Profile #10 YR.

```
*****  
* W.S. Elev (ft)      * 5376.98 * Element      * Left OB * Channel * Right OB *  
* Vel Head (ft)       * 0.28 * Wt. n-Val.      * 0.060 * 0.040 * 0.060 *  
* E.G. Elev (ft)       * 5377.26 * Reach Len. (ft)  * 1376.63 * 575.56 * 416.06 *  
* Crit W.S. (ft)       * 5376.98 * Flow Area (sq ft) * 115.63 * 41.95 * 15.16 *  
* E.G. Slope (ft/ft)    * 0.008376 * Area (sq ft)   * 115.63 * 41.95 * 15.16 *  
* Q Total (cfs)        * 408.00 * Flow (cfs)      * 152.08 * 230.13 * 25.79 *  
* Top Width (ft)        * 304.87 * Top Width (ft)  * 261.58 * 20.03 * 23.26 *  
* Vel Total (ft/s)      * 2.36 * Avg. Vel. (ft/s) * 1.32 * 5.49 * 1.70 *  
* Max Chl Dpth (ft)     * 2.98 * Hydr. Depth (ft) * 0.44 * 2.09 * 0.65 *  
* Conv. Total (cfs)      * 4458.0 * Conv. (cfs)    * 1661.7 * 2514.5 * 281.8 *  
* Length Wtd. (ft)       * 642.31 * Wetted Per. (ft) * 261.58 * 20.47 * 23.29 *  
* Min Ch El (ft)        * 5374.00 * Shear (lb/sq ft) * 0.23 * 1.07 * 0.34 *  
* Alpha                 * 3.19 * Stream Power (lb/ft s) * 0.30 * 5.88 * 0.58 *  
* Frctn Loss (ft)        * 0.18 * Cum Volume (acre-ft) * 9.24 * 0.74 * 9.72 *  
* C & E Loss (ft)        * 0.08 * Cum SA (acres)   * 6.50 * 0.35 * 5.46 *  
*****
```

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less

than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross

section. This may indicate the need for additional cross sections.

arning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION RIVER: NE CANON DRAINAG
REACH: SUB-BASIN FROM N RS: 2

CROSS SECTION OUTPUT Profile #100 YR.

```
*****
* W.S. Elev (ft)      * 5369.20 * Element      * Left OB * Channel * Right OB *
* Vel Head (ft)       * 0.00 * Wt. n-Val.      * 0.060 * 0.040 * 0.060 *
* E.G. Elev (ft)       * 5369.21 * Reach Len. (ft)  * 311.12 * 311.12 * 311.12 *
* Crit W.S. (ft)        * * Flow Area (sq ft)      * 194.97 * 59.10 * 2353.81 *
* E.G. Slope (ft/ft)    * 0.000041 * Area (sq ft)    * 194.97 * 59.10 * 2353.81 *
* Q Total (cfs)        * 926.00 * Flow (cfs)      * 29.19 * 29.32 * 867.49 *
* Top Width (ft)        * 890.20 * Top Width (ft)    * 212.71 * 18.00 * 659.49 *
* Vel Total (ft/s)     * 0.36 * Avg. Vel. (ft/s)   * 0.15 * 0.50 * 0.37 *
* Max Chl Dpth (ft)    * 5.41 * Hydr. Depth (ft)   * 0.92 * 3.28 * 3.57 *
* Conv. Total (cfs)     * 144483.2 * Conv. (cfs)   * 4554.9 * 4574.3 * 135354.0 *
* Length Wtd. (ft)      * 311.12 * Wetted Per. (ft)  * 212.79 * 19.65 * 665.25 *
* Min Ch El (ft)        * 5364.56 * Shear (lb/sq ft) * 0.00 * 0.01 * 0.01 *
* Alpha                 * 1.08 * Stream Power (lb/ft s) * 0.00 * 0.00 * 0.00 *
* Frctn Loss (ft)       * 0.01 * Cum Volume (acre-ft) * 12.85 * 0.55 * 11.16 *
* C & E Loss (ft)        * 0.00 * Cum SA (acres)     * 3.13 * 0.13 * 3.85 *
*****
```

arning - The cross-section end points had to be extended vertically for the computed water surface.

arning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #50 YR.

```
*****
* W.S. Elev (ft)      * 5368.61 * Element      * Left OB * Channel * Right OB *
* Vel Head (ft)       * 0.00 * Wt. n-Val.      * 0.060 * 0.040 * 0.060 *
* E.G. Elev (ft)       * 5368.61 * Reach Len. (ft)  * 311.12 * 311.12 * 311.12 *
* Crit W.S. (ft)        * * Flow Area (sq ft)      * 82.24 * 48.32 * 1958.69 *
* E.G. Slope (ft/ft)    * 0.000050 * Area (sq ft)    * 82.24 * 48.32 * 1958.69 *
* Q Total (cfs)        * 740.00 * Flow (cfs)      * 9.09 * 23.21 * 707.71 *
* Top Width (ft)        * 842.44 * Top Width (ft)    * 164.95 * 18.00 * 659.49 *
* Vel Total (ft/s)     * 0.35 * Avg. Vel. (ft/s)   * 0.11 * 0.48 * 0.36 *
* Max Chl Dpth (ft)    * 4.82 * Hydr. Depth (ft)   * 0.50 * 2.68 * 2.97 *
* Conv. Total (cfs)     * 104256.6 * Conv. (cfs)   * 1280.3 * 3269.6 * 99706.7 *
* Length Wtd. (ft)      * 311.12 * Wetted Per. (ft)  * 165.02 * 19.65 * 664.65 *
* Min Ch El (ft)        * 5364.56 * Shear (lb/sq ft) * 0.00 * 0.01 * 0.01 *
* Alpha                 * 1.05 * Stream Power (lb/ft s) * 0.00 * 0.00 * 0.00 *
* Frctn Loss (ft)       * 0.01 * Cum Volume (acre-ft) * 11.02 * 0.48 * 8.86 *
* C & E Loss (ft)        * 0.00 * Cum SA (acres)     * 2.96 * 0.13 * 3.85 *
*****
```

arning - The cross-section end points had to be extended vertically for the computed water surface.

arning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #10 YR.

```
*****
* W.S. Elev (ft)      * 5367.21 * Element      * Left OB * Channel * Right OB *
```

Vel Head (ft)	*	0.00 * Wt. n-Val.	*	*	0.040 *	0.060 *
* E.G. Elev (ft)	*	5367.21 * Reach Len. (ft)	*	311.12 *	311.12 *	311.12 *
* Crit W.S. (ft)	*	*	*	*	24.60 *	1096.11 *
E.G. Slope (ft/ft)	*	0.000087 * Area (sq ft)	*	*	24.60 *	1096.11 *
* Q Total (cfs)	*	408.00 * Flow (cfs)	*	*	11.46 *	396.54 *
* Top Width (ft)	*	576.08 * Top Width (ft)	*	*	14.59 *	561.49 *
Vel Total (ft/s)	*	0.36 * Avg. Vel. (ft/s)	*	*	0.47 *	0.36 *
Max Chl Dpth (ft)	*	3.42 * Hydr. Depth (ft)	*	*	1.69 *	1.95 *
* Conv. Total (cfs)	*	43630.2 * Conv. (cfs)	*	*	1225.7 *	42404.5 *
Length Wtd. (ft)	*	311.12 * Wetted Per. (ft)	*	*	15.84 *	565.19 *
Min Ch El (ft)	*	5364.56 * Shear (lb/sq ft)	*	*	0.01 *	0.01 *
* Alpha	*	1.01 * Stream Power (lb/ft s)	*	*	0.00 *	0.00 *
* Frctn Loss (ft)	*	0.01 * Cum Volume (acre-ft)	*	7.41 *	0.30 *	4.41 *
C & E Loss (ft)	*	0.00 * Cum SA (acres)	*	2.37 *	0.12 *	2.67 *

rnning - Divided flow computed for this cross-section.

rnning - The cross-section end points had to be extended vertically for the computed water surface.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

CROSS SECTION RIVER: NE CANON DRAINAG

REACH: SUB-BASIN FROM N RS: 1

CROSS SECTION OUTPUT Profile #100 YR.

W.S. Elev (ft)	*	5369.20 * Element	*	Left OB *	Channel *	Right OB *
* Vel Head (ft)	*	0.00 * Wt. n-Val.	*	0.060 *	0.040 *	0.060 *
* E.G. Elev (ft)	*	5369.20 * Reach Len. (ft)	*	*	*	*
Crit W.S. (ft)	*	5364.11 * Flow Area (sq ft)	*	3402.47 *	96.10 *	772.06 *
E.G. Slope (ft/ft)	*	0.000010 * Area (sq ft)	*	3402.47 *	96.10 *	772.06 *
* Q Total (cfs)	*	926.00 * Flow (cfs)	*	800.53 *	33.08 *	92.39 *
Top Width (ft)	*	1100.06 * Top Width (ft)	*	663.63 *	18.00 *	418.43 *
Vel Total (ft/s)	*	0.22 * Avg. Vel. (ft/s)	*	0.24 *	0.34 *	0.12 *
* Max Chl Dpth (ft)	*	6.70 * Hydr. Depth (ft)	*	5.13 *	5.34 *	1.85 *
Conv. Total (cfs)	*	287925.3 * Conv. (cfs)	*	248913.7 *	10285.4 *	28726.1 *
Length Wtd. (ft)	*	*	*	670.16 *	19.65 *	419.26 *
* Min Ch El (ft)	*	5362.50 * Shear (lb/sq ft)	*	0.00 *	0.00 *	0.00 *
* Alpha	*	1.14 * Stream Power (lb/ft s)	*	0.00 *	0.00 *	0.00 *
Frctn Loss (ft)	*	*	*	*	*	*
C & E Loss (ft)	*	*	*	*	*	*

CROSS SECTION OUTPUT Profile #50 YR.

* W.S. Elev (ft)	*	5368.60 * Element	*	Left OB *	Channel *	Right OB *
Vel Head (ft)	*	0.00 * Wt. n-Val.	*	0.060 *	0.040 *	0.060 *
* E.G. Elev (ft)	*	5368.60 * Reach Len. (ft)	*	*	*	*
* Crit W.S. (ft)	*	5363.95 * Flow Area (sq ft)	*	3004.23 *	85.30 *	520.96 *
E.G. Slope (ft/ft)	*	0.000011 * Area (sq ft)	*	3004.23 *	85.30 *	520.96 *
* Q Total (cfs)	*	740.00 * Flow (cfs)	*	663.44 *	27.64 *	48.93 *
* Top Width (ft)	*	1100.06 * Top Width (ft)	*	663.63 *	18.00 *	418.43 *
Vel Total (ft/s)	*	0.20 * Avg. Vel. (ft/s)	*	0.22 *	0.32 *	0.09 *
Max Chl Dpth (ft)	*	6.10 * Hydr. Depth (ft)	*	4.53 *	4.74 *	1.25 *
* Conv. Total (cfs)	*	225755.9 * Conv. (cfs)	*	202397.8 *	8431.8 *	14926.2 *
* Length Wtd. (ft)	*	*	*	669.56 *	19.65 *	418.66 *
Min Ch El (ft)	*	5362.50 * Shear (lb/sq ft)	*	0.00 *	0.00 *	0.00 *
* Alpha	*	1.15 * Stream Power (lb/ft s)	*	0.00 *	0.00 *	0.00 *
* Frctn Loss (ft)	*	*	*	*	*	*

C & E Loss (ft) * Cum SA (acres) * * * *

ROSS SECTION OUTPUT Profile #10 YR.

* W.S. Elev (ft)	* 5367.20	* Element	* Left OB	* Channel	* Right OB	*
Vel Head (ft)	* 0.00	* Wt. n-Val.	* 0.060	* 0.040	* 0.060	*
E.G. Elev (ft)	* 5367.20	* Reach Len. (ft)	* *	* *	* *	*
* Crit W.S. (ft)	* 5363.75	* Flow Area (sq ft)	* 2075.21	* 60.10	* 139.04	*
E.G. Slope (ft/ft)	* 0.000012	* Area (sq ft)	* 2075.21	* 60.10	* 139.04	*
Q Total (cfs)	* 408.00	* Flow (cfs)	* 381.68	* 16.41	* 9.90	*
* Top Width (ft)	* 867.34	* Top Width (ft)	* 663.63	* 18.00	* 185.71	*
* Vel Total (ft/s)	* 0.18	* Avg. Vel. (ft/s)	* 0.18	* 0.27	* 0.07	*
Max Chl Dpth (ft)	* 4.70	* Hydr. Depth (ft)	* 3.13	* 3.34	* 0.75	*
Conv. Total (cfs)	* 116945.7	* Conv. (cfs)	* 109402.6	* 4704.2	* 2838.9	*
* Length Wtd. (ft)	*	* Wetted Per. (ft)	* 668.16	* 19.65	* 185.72	*
Min Ch El (ft)	* 5362.50	* Shear (lb/sq ft)	* 0.00	* 0.00	* 0.00	*
Alpha	* 1.08	* Stream Power (lb/ft s)	* 0.00	* 0.00	* 0.00	*
* Frctn Loss (ft)	*	* Cum Volume (acre-ft)	*	*	*	*
* C & E Loss (ft)	*	* Cum SA (acres)	*	*	*	*

SUMMARY OF REACH LENGTHS

River: NE CANON DRAINAG

* Reach	* River Sta.	* Left	* Channel	* Right	*
---	---	---	---	---	---
SUB-BASIN FROM N*	11	* 130.52*	178.2*	226.2*	
SUB-BASIN FROM N*	10	* 117.59*	123.73*	133.26*	
SUB-BASIN FROM N	9.5	*Culvert	*	*	*
SUB-BASIN FROM N*	9	* 921.6*	738.87*	563.85*	
SUB-BASIN FROM N*	8	* 621.48*	659.67*	748.44*	
SUB-BASIN FROM N	7	* 1000*	988.8*	1029.2*	
SUB-BASIN FROM N*	6	* 225.86*	492.6*	258.94*	
SUB-BASIN FROM N*	5.8	* 83.16*	83.32*	83.48*	
SUB-BASIN FROM N	5.5	*Culvert	*	*	*
SUB-BASIN FROM N	5	* 516.42*	295.74*	215.52*	
SUB-BASIN FROM N*	4	* 897.07*	965.75*	906.29*	
SUB-BASIN FROM N*	3	* 1376.63*	575.56*	416.06*	
SUB-BASIN FROM N	2	* 311.12*	311.12*	311.12*	
SUB-BASIN FROM N*	1	* 0*	0*	0*	

Profile Output Table - Culvert Only

* Reach	* River Sta	* E.G. US.	* W.S. US.	* E.G. IC	* E.G. OC	*Min Top Rd	* Culv Q	* Q Weir	* Delta WS	*Culv Vel In							
*	*	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft)	(ft/s)							
---	---	---	---	---	---	---	---	---	---	---							
SUB-BASIN FROM N*	9.5	HIGH STREET*	5437.86	*	5437.85	*	5437.86	*	5437.54	*	5436.79	*	113.20	*	812.86	*	9.83
* SUB-BASIN FROM N*	9.5	HIGH STREET*	5437.78	*	5437.77	*	5437.78	*	5437.47	*	5436.79	*	112.53	*	627.47	*	10.06
SUB-BASIN FROM N*	9.5	HIGH STREET*	5437.55	*	5437.54	*	5437.55	*	5437.27	*	5436.79	*	110.67	*	296.69	*	10.44
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
* SUB-BASIN FROM N*	5.5	SOUTH STREET*	5396.98	*	5396.97	*	5395.27	*	5396.98	*	5395.78	*	213.79	*	712.21	*	4.24
* SUB-BASIN FROM N*	5.5	SOUTH STREET*	5396.80	*	5396.78	*	5395.48	*	5396.80	*	5395.78	*	218.81	*	521.19	*	4.45
SUB-BASIN FROM N*	5.5	SOUTH STREET*	5396.38	*	5396.38	*	5395.94	*	5396.38	*	5395.78	*	229.21	*	178.79	*	4.94

ofile Output Table - Standard Table 1

* Reach	* River Sta	* Q Total	* Min Ch El	* W.S. Elev	* Crit W.S.	* E.G. Elev	* E.G. Slope	* Vel Chnl	* Flow Area	* Top Width	* F		
		(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)			
* SUB-BASIN FROM N* 11	*	926.00	*	5435.97	*	5437.82	*	*	5437.94	*	0.004687	*	
SUB-BASIN FROM N* 11	*	740.00	*	5435.97	*	5437.74	*	*	5437.83	*	0.003944	*	
SUB-BASIN FROM N* 11	*	408.00	*	5435.97	*	5437.52	*	*	5437.57	*	0.002612	*	
*	*	*	*	*	*	*	*	*	*	*	*	*	
SUB-BASIN FROM N* 10	*	926.00	*	5429.00	*	5437.85	*	5432.42	*	5437.86	*	0.000076	*
SUB-BASIN FROM N* 10	*	740.00	*	5429.00	*	5437.77	*	5431.98	*	5437.78	*	0.000054	*
* SUB-BASIN FROM N* 10	*	408.00	*	5429.00	*	5437.54	*	5431.05	*	5437.55	*	0.000022	*
*	*	*	*	*	*	*	*	*	*	*	*	*	
SUB-BASIN FROM N* 9.5	*	Culvert	*	*	*	*	*	*	*	*	*	*	
*	*	*	*	*	*	*	*	*	*	*	*	*	
* SUB-BASIN FROM N* 9	*	926.00	*	5424.60	*	5428.02	*	5428.02	*	5429.02	*	0.019118	*
SUB-BASIN FROM N* 9	*	740.00	*	5424.60	*	5427.71	*	5427.71	*	5428.60	*	0.020194	*
SUB-BASIN FROM N* 9	*	408.00	*	5424.60	*	5427.11	*	5427.11	*	5427.71	*	0.021432	*
*	*	*	*	*	*	*	*	*	*	*	*	*	
SUB-BASIN FROM N* 8	*	926.00	*	5410.44	*	5414.57	*	5414.19	*	5415.07	*	0.010022	*
SUB-BASIN FROM N* 8	*	740.00	*	5410.44	*	5414.27	*	*	5414.72	*	0.010951	*	
* SUB-BASIN FROM N* 8	*	408.00	*	5410.44	*	5413.64	*	5413.47	*	5413.98	*	0.013886	*
*	*	*	*	*	*	*	*	*	*	*	*	*	
SUB-BASIN FROM N* 7	*	926.00	*	5403.35	*	5409.34	*	5408.63	*	5409.80	*	0.006272	*
SUB-BASIN FROM N* 7	*	740.00	*	5403.35	*	5408.96	*	5408.31	*	5409.39	*	0.006134	*
* SUB-BASIN FROM N* 7	*	408.00	*	5403.35	*	5408.13	*	5407.31	*	5408.46	*	0.005557	*
*	*	*	*	*	*	*	*	*	*	*	*	*	
SUB-BASIN FROM N* 6	*	926.00	*	5394.67	*	5398.52	*	5398.52	*	5399.19	*	0.022028	*
* SUB-BASIN FROM N* 6	*	740.00	*	5394.67	*	5398.28	*	5398.28	*	5398.90	*	0.022332	*
* SUB-BASIN FROM N* 6	*	408.00	*	5394.67	*	5397.80	*	5397.80	*	5398.27	*	0.024982	*
*	*	*	*	*	*	*	*	*	*	*	*	*	
SUB-BASIN FROM N* 5.8	*	926.00	*	5387.35	*	5396.97	*	5391.63	*	5396.98	*	0.000097	*
* SUB-BASIN FROM N* 5.8	*	740.00	*	5387.35	*	5396.78	*	5391.24	*	5396.80	*	0.000075	*
SUB-BASIN FROM N* 5.8	*	408.00	*	5387.35	*	5396.38	*	5390.24	*	5396.38	*	0.000036	*
*	*	*	*	*	*	*	*	*	*	*	*	*	
* SUB-BASIN FROM N* 5.5	*	Culvert	*	*	*	*	*	*	*	*	*	*	
*	*	*	*	*	*	*	*	*	*	*	*	*	
SUB-BASIN FROM N* 5	*	926.00	*	5386.20	*	5392.73	*	*	5393.14	*	0.004176	*	
* SUB-BASIN FROM N* 5	*	740.00	*	5386.20	*	5392.34	*	*	5392.67	*	0.003693	*	
* SUB-BASIN FROM N* 5	*	408.00	*	5386.20	*	5391.44	*	*	5391.62	*	0.002643	*	
*	*	*	*	*	*	*	*	*	*	*	*	*	
SUB-BASIN FROM N* 4	*	926.00	*	5386.00	*	5390.20	*	5390.14	*	5390.89	*	0.017363	*
* SUB-BASIN FROM N* 4	*	740.00	*	5386.00	*	5389.98	*	5389.90	*	5390.57	*	0.018095	*
SUB-BASIN FROM N* 4	*	408.00	*	5386.00	*	5389.28	*	5389.27	*	5389.83	*	0.023546	*
*	*	*	*	*	*	*	*	*	*	*	*	*	
* SUB-BASIN FROM N* 3	*	926.00	*	5374.00	*	5377.40	*	5377.40	*	5377.76	*	0.011274	*
* SUB-BASIN FROM N* 3	*	740.00	*	5374.00	*	5377.26	*	5377.26	*	5377.60	*	0.010637	*
SUB-BASIN FROM N* 3	*	408.00	*	5374.00	*	5376.98	*	5376.98	*	5377.26	*	0.008376	*
*	*	*	*	*	*	*	*	*	*	*	*	*	
* SUB-BASIN FROM N* 2	*	926.00	*	5364.56	*	5369.20	*	*	5369.21	*	0.000041	*	
SUB-BASIN FROM N* 2	*	740.00	*	5364.56	*	5368.61	*	*	5368.61	*	0.000050	*	
SUB-BASIN FROM N* 2	*	408.00	*	5364.56	*	5367.21	*	*	5367.21	*	0.000087	*	
*	*	*	*	*	*	*	*	*	*	*	*	*	
SUB-BASIN FROM N* 1	*	926.00	*	5362.50	*	5369.20	*	5364.11	*	5369.20	*	0.000010	*
SUB-BASIN FROM N* 1	*	740.00	*	5362.50	*	5368.60	*	5363.95	*	5368.60	*	0.000011	*
* SUB-BASIN FROM N* 1	*	408.00	*	5362.50	*	5367.20	*	5363.75	*	5367.20	*	0.000012	*

RORS WARNINGS AND NOTES

Errors Warnings and Notes for Plan : PRE DET.

ver: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 11 Profile: 1

Warning - The cross-section end points had to be extended vertically for the computed water surface.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

ver: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 11 Profile: 2

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

ver: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 11 Profile: 3

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

ver: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 9.5 Profile: 1

Warning - During subcritical analysis, while trying to calculate culvert and weir flow, the program could not get a balance of energy within the specified tolerance and number of trials. The program used the solution with the minimum error.

ver: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 9.5 Profile: 1 Culv: HIGH STREET

Warning - Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

Note - Culvert critical depth exceeds the height of the culvert.

Note - The flow in the culvert is entirely supercritical.

ver: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 9.5 Profile: 2

Warning - During subcritical analysis, while trying to calculate culvert and weir flow, the program could not get a balance of energy within the specified tolerance and number of trials. The program used the solution with the minimum error.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 9.5 Profile: 2 Culv: HIGH STREET

Warning - Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

Note - Culvert critical depth exceeds the height of the culvert.

Note - The flow in the culvert is entirely supercritical.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 9.5 Profile: 3

Warning - During subcritical analysis, while trying to calculate culvert and weir flow, the program could not get a balance of energy within the specified tolerance and number of trials. The program used the solution with the minimum error.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 9.5 Profile: 3 Culv: HIGH STREET

Warning - Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

Note - Culvert critical depth exceeds the height of the culvert.

Note - The flow in the culvert is entirely supercritical.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 9 Profile: 1

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 9 Profile: 2

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 9 Profile: 3

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 8 Profile: 1

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 8 Profile: 2

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 8 Profile: 3

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 7 Profile: 1

Warning - Divided flow computed for this cross-section.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 7 Profile: 2

Warning - Divided flow computed for this cross-section.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 7 Profile: 3

Warning - Divided flow computed for this cross-section.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 6 Profile: 1

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 6 Profile: 2

- Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
- Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
- Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
- Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.
- Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 6 Profile: 3

- Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
- Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
- Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.
- Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 5.5 Profile: 3 Culv: SOUTH STREET

- Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 5 Profile: 1

- Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
- Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 5 Profile: 2

- Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
- Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 5 Profile: 3

- Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
- Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 4 Profile: 1

- Warning - Divided flow computed for this cross-section.
- Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.
- Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 4 Profile: 2

- Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.
- Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 4 Profile: 3

- Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
- Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 3 Profile: 1

- Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
- Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 3 Profile: 2

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 3 Profile: 3

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 2 Profile: 1

Warning - The cross-section end points had to be extended vertically for the computed water surface.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 2 Profile: 2

Warning - The cross-section end points had to be extended vertically for the computed water surface.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

River: NE CANON DRAINAG Reach: SUB-BASIN FROM N RS: 2 Profile: 3

Warning - Divided flow computed for this cross-section.

Warning - The cross-section end points had to be extended vertically for the computed water surface.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

SECTION 4

HEC-RAS Run – As Built Conditions

HEC-RAS Version 2.0 April 1997
U.S. Army Corp of Engineers
Hydrologic Engineering Center
609 Second Street, Suite D
Davis, California 95616-4687
(916) 756-1104

X	X	XXXXXX	XXXX	XXXX	XX	XXXX
X	X	X	X	X	X	X
X	X	X	X	X	X	X
XXXXXX	XXXX	X	XXX	XXXX	XXXXXX	XXXX
X	X	X	X	X	X	X
X	X	X	X	X	X	X
X	X	XXXXXX	XXXX	X	X	XXXX

PROJECT DATA

Project Title: CANON CITY LOMR - AS BUILT

Project File : safety.prj

Date and Time: 3/30/98 8:33:00 AM

Project in English units

Project Description:

AS BUILT CONDITIONS

MAP REVISION

OF CANON CITY, COLORADO

3/26/98

TTW

CROSS SECTION RIVER: RED CANON DRAW

ACH: MAIN STEM

RS: 11

CROSS SECTION OUTPUT Profile #100 YR.

* W.S. Elev (ft)	* 5437.47	* Element	* Left OB	* Channel	* Right OB	*
* Vel Head (ft)	* 0.01	* Wt. n-Val.	* 0.060	* 0.040	* 0.060	*
E.G. Elev (ft)	* 5437.48	* Reach Len. (ft)	* 133.26	* 123.73	* 117.59	*
- Crit W.S. (ft)	* 5432.30	* Flow Area (sq ft)	* 86.71	* 1155.66	* 79.38	*
* E.G. Slope (ft/ft)	* 0.000130	* Area (sq ft)	* 86.71	* 1155.66	* 79.38	*
Q Total (cfs)	* 926.00	* Flow (cfs)	* 22.51	* 880.99	* 22.51	*
Top Width (ft)	* 668.67	* Top Width (ft)	* 121.42	* 469.42	* 77.83	*
* Vel Total (ft/s)	* 0.70	* Avg. Vel. (ft/s)	* 0.26	* 0.76	* 0.28	*
Max Chl Dpth (ft)	* 8.47	* Hydr. Depth (ft)	* 0.71	* 2.46	* 1.02	*
Conv. Total (cfs)	* 81285.4	* Conv. (cfs)	* 1975.5	* 77334.0	* 1975.9	*
* Length Wtd. (ft)	* 123.73	* Wetted Per. (ft)	* 121.67	* 477.99	* 78.77	*
* Min Ch El (ft)	* 5429.00	* Shear (lb/sq ft)	* 0.01	* 0.02	* 0.01	*
Alpha	* 1.13	* Stream Power (lb/ft s)	* 0.00	* 0.01	* 0.00	*
Frctn Loss (ft)	*	* Cum Volume (acre-ft)	* 1.19	* 81.79	* 1.23	*
* C & E Loss (ft)	*	* Cum SA (acres)	* 0.48	* 16.62	* 0.40	*

CROSS SECTION OUTPUT Profile #50 YR.

* W.S. Elev (ft)	* 5437.31 * Element	* Left OB *	Channel *	Right OB *
* Vel Head (ft)	* 0.01 * Wt. n-Val.	* 0.060 *	0.040 *	0.060 *
E.G. Elev (ft)	* 5437.32 * Reach Len. (ft)	* 133.26 *	123.73 *	117.59 *
Crit W.S. (ft)	* 5431.85 * Flow Area (sq ft)	* 68.79 *	1080.02 *	66.83 *
* E.G. Slope (ft/ft)	* 0.000105 * Area (sq ft)	* 68.79 *	1080.02 *	66.83 *
Q Total (cfs)	* 740.00 * Flow (cfs)	* 15.83 *	708.92 *	15.24 *
Top Width (ft)	* 642.25 * Top Width (ft)	* 95.00 *	469.42 *	77.83 *
* Vel Total (ft/s)	* 0.61 * Avg. Vel. (ft/s)	* 0.23 *	0.66 *	0.23 *
* Max Chl Dpth (ft)	* 8.31 * Hydr. Depth (ft)	* 0.72 *	2.30 *	0.86 *
Conv. Total (cfs)	* 72111.8 * Conv. (cfs)	* 1542.8 *	69083.5 *	1485.5 *
Length Wtd. (ft)	* 123.73 * Wetted Per. (ft)	* 95.08 *	477.99 *	78.61 *
* Min Ch El (ft)	* 5429.00 * Shear (lb/sq ft)	* 0.00 *	0.01 *	0.01 *
Alpha	* 1.12 * Stream Power (lb/ft s)	* 0.00 *	0.01 *	0.00 *
Frctn Loss (ft)	* * Cum Volume (acre-ft)	* 0.84 *	74.32 *	0.88 *
* C & E Loss (ft)	* * Cum SA (acres)	* 0.39 *	16.44 *	0.37 *

CROSS SECTION OUTPUT Profile #10 YR.

* W.S. Elev (ft)	* 5435.97 * Element	* Left OB *	Channel *	Right OB *
Vel Head (ft)	* 0.01 * Wt. n-Val.	* *	0.040 *	*
* E.G. Elev (ft)	* 5435.99 * Reach Len. (ft)	* 133.26 *	123.73 *	117.59 *
Crit W.S. (ft)	* 5430.93 * Flow Area (sq ft)	* *	451.35 *	*
E.G. Slope (ft/ft)	* 0.000633 * Area (sq ft)	* *	451.35 *	*
* Q Total (cfs)	* 408.00 * Flow (cfs)	* *	408.00 *	*
* Top Width (ft)	* 465.81 * Top Width (ft)	* *	465.81 *	*
Vel Total (ft/s)	* 0.90 * Avg. Vel. (ft/s)	* *	0.90 *	*
Max Chl Dpth (ft)	* 6.97 * Hydr. Depth (ft)	* *	0.97 *	*
Conv. Total (cfs)	* 16219.5 * Conv. (cfs)	* *	16219.5 *	*
Length Wtd. (ft)	* 123.73 * Wetted Per. (ft)	* *	474.39 *	*
Min Ch El (ft)	* 5429.00 * Shear (lb/sq ft)	* *	0.04 *	*
Alpha	* 1.00 * Stream Power (lb/ft s)	* *	0.03 *	*
Frctn Loss (ft)	* * Cum Volume (acre-ft)	* 0.25 *	27.06 *	0.26 *
C & E Loss (ft)	* * Cum SA (acres)	* 0.14 *	9.42 *	0.15 *

ULVERT OUTPUT Profile #100 YR.

Culvert ID : HIGH ST - 6'

RIVER: RED CANON DRAW

REACH: MAIN STEM

RS: 10.5

* Culv Q (cfs)	* 292.92 * Culv Vel In (ft/s) *	10.37 *
* # Barrels	* 1 * Culv Vel Out (ft/s) *	12.38 *
* Q Barrel (cfs)	* 292.92 * Culv Inv El Up (ft) *	5429.00 *
W.S. US. (ft)	* 5437.47 * Culv Inv El Dn (ft) *	5428.85 *
E.G. US. (ft)	* 5437.48 * Culv Frctn Ls (ft) *	0.73 *
* Delta WS (ft)	* 9.43 * Culv Ext Lss (ft) *	6.86 *
Delta EG (ft)	* 8.44 * Culv Ent Lss (ft) *	0.83 *
E.G. IC (ft)	* 5437.20 * Q Weir (cfs) *	416.51 *
* E.G. OC (ft)	* 5437.48 * Weir Sta Lft (ft) *	84.72 *
* Culv WS In (ft)	* 5434.97 * Weir Sta Rgt (ft) *	708.26 *
Culv WS Out (ft)	* 5433.53 * Weir Submerg *	0.00 *
Culv Nml Depth (ft)	* 6.00 * Weir Max Depth (ft) *	0.93 *
* Culv Crt Depth (ft)	* 4.68 * Weir Avg Depth (ft) *	0.35 *
Culv Ful Lngh (ft)	* * Min Top Rd (ft) *	5436.55 *

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal

depth is equal to the height of the culvert.

LVERT OUTPUT Profile #50 YR.

Culvert ID : HIGH ST - 6'

```
*****
Culv Q (cfs)      * 286.87 * Culv Vel In (ft/s) * 10.18 *
# Barrels          *      1 * Culv Vel Out (ft/s) * 12.24 *
* Q Barrel (cfs)   * 286.87 * Culv Inv El Up (ft) * 5429.00 *
* W.S. US. (ft)    * 5437.31 * Culv Inv El Dn (ft) * 5428.85 *
E.G. US. (ft)      * 5437.32 * Culv Frctn Ls (ft) * 0.70 *
Delta WS (ft)      * 9.55 * Culv Ext Lss (ft) * 7.18 *
Delta EG (ft)      * 8.69 * Culv Ent Lss (ft) * 0.80 *
E.G. IC (ft)       * 5437.03 * Q Weir (cfs) * 240.48 *
E.G. OC (ft)       * 5437.32 * Weir Sta Lft (ft) * 140.07 *
* Culv WS In (ft)  * 5434.90 * Weir Sta Rgt (ft) * 708.26 *
Culv WS Out (ft)   * 5433.48 * Weir Submrg * 0.00 *
Culv Nml Depth (ft) * 6.00 * Weir Max Depth (ft) * 0.78 *
* Culv Crt Depth (ft) * 4.63 * Weir Avg Depth (ft) * 0.29 *
* Culv Ful Lngh (ft) *           * Min Top Rd (ft) * 5436.55 *
*****
```

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

CULVERT OUTPUT Profile #10 YR.

Culvert ID : HIGH ST - 6'

```
*****
* Culv Q (cfs)      * 228.76 * Culv Vel In (ft/s) * 8.81 *
* # Barrels          *      1 * Culv Vel Out (ft/s) * 10.99 *
* Q Barrel (cfs)   * 228.76 * Culv Inv El Up (ft) * 5429.00 *
W.S. US. (ft)      * 5435.97 * Culv Inv El Dn (ft) * 5428.85 *
* E.G. US. (ft)    * 5435.99 * Culv Frctn Ls (ft) * 0.52 *
Delta WS (ft)      * 8.71 * Culv Ext Lss (ft) * 7.11 *
Delta EG (ft)      * 8.23 * Culv Ent Lss (ft) * 0.60 *
* E.G. IC (ft)       * 5435.52 * Q Weir (cfs) * *
* E.G. OC (ft)       * 5435.99 * Weir Sta Lft (ft) * *
Culv WS In (ft)    * 5434.18 * Weir Sta Rgt (ft) * *
Culv WS Out (ft)   * 5432.99 * Weir Submrg * *
* Culv Nml Depth (ft) * 6.00 * Weir Max Depth (ft) * *
Culv Crt Depth (ft) * 4.14 * Weir Avg Depth (ft) * *
Culv Ful Lngh (ft) *           * Min Top Rd (ft) * 5436.55 *
*****
```

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

LVERT OUTPUT Profile #100 YR.

Culvert ID : HIGH ST - 5'

```
*****
Culv Q (cfs)      * 216.56 * Culv Vel In (ft/s) * 11.03 *
# Barrels          *      1 * Culv Vel Out (ft/s) * 12.35 *
* Q Barrel (cfs)   * 216.56 * Culv Inv El Up (ft) * 5429.00 *
* W.S. US. (ft)    * 5437.47 * Culv Inv El Dn (ft) * 5428.85 *
E.G. US. (ft)      * 5437.48 * Culv Frctn Ls (ft) * 1.14 *
Delta WS (ft)      * 9.43 * Culv Ext Lss (ft) * 6.35 *
Delta EG (ft)      * 8.44 * Culv Ent Lss (ft) * 0.94 *
E.G. IC (ft)       * 5437.05 * Q Weir (cfs) * 416.51 *
E.G. OC (ft)       * 5437.49 * Weir Sta Lft (ft) * 84.72 *
* Culv WS In (ft)  * 5434.00 * Weir Sta Rgt (ft) * 708.26 *
Culv WS Out (ft)   * 5433.03 * Weir Submrg * 0.00 *
*****
```

* Culv Nml Depth (ft) * 5.00 * Weir Max Depth (ft) * 0.93 *
* Culv Crt Depth (ft) * 4.18 * Weir Avg Depth (ft) * 0.35 *
Culv Ful Lng (ft) * 31.99 * Min Top Rd (ft) * 5436.55 *

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

CULVERT OUTPUT Profile #50 YR.

Culvert ID : HIGH ST - 5'

* Culv Q (cfs) * 212.65 * Culv Vel In (ft/s) * 10.83 *
* # Barrels * 1 * Culv Vel Out (ft/s) * 12.21 *
* Q Barrel (cfs) * 212.65 * Culv Inv El Up (ft) * 5429.00 *
* W.S. US. (ft) * 5437.31 * Culv Inv El Dn (ft) * 5428.85 *
* E.G. US. (ft) * 5437.32 * Culv Frctn Ls (ft) * 1.10 *
* Delta WS (ft) * 9.55 * Culv Ext Lss (ft) * 6.69 *
* Delta EG (ft) * 8.69 * Culv Ent Lss (ft) * 0.91 *
* E.G. IC (ft) * 5436.89 * Q Weir (cfs) * 240.48 *
* E.G. OC (ft) * 5437.32 * Weir Sta Lft (ft) * 140.07 *
* Culv WS In (ft) * 5434.00 * Weir Sta Rgt (ft) * 708.26 *
* Culv WS Out (ft) * 5433.00 * Weir Submerg * 0.00 *
* Culv Nml Depth (ft) * 5.00 * Weir Max Depth (ft) * 0.78 *
* Culv Crt Depth (ft) * 4.15 * Weir Avg Depth (ft) * 0.29 *
* Culv Ful Lng (ft) * 29.84 * Min Top Rd (ft) * 5436.55 *

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

JLVERT OUTPUT Profile #10 YR.

Culvert ID : HIGH ST - 5'

* Culv Q (cfs) * 179.24 * Culv Vel In (ft/s) * 9.13 *
* # Barrels * 1 * Culv Vel Out (ft/s) * 11.09 *
* Q Barrel (cfs) * 179.24 * Culv Inv El Up (ft) * 5429.00 *
* W.S. US. (ft) * 5435.97 * Culv Inv El Dn (ft) * 5428.85 *
* E.G. US. (ft) * 5435.99 * Culv Frctn Ls (ft) * 0.74 *
* Delta WS (ft) * 8.71 * Culv Ext Lss (ft) * 6.84 *
* Delta EG (ft) * 8.23 * Culv Ent Lss (ft) * 0.65 *
* E.G. IC (ft) * 5435.60 * Q Weir (cfs) * *
* E.G. OC (ft) * 5435.98 * Weir Sta Lft (ft) * *
* Culv WS In (ft) * 5434.00 * Weir Sta Rgt (ft) * *
* Culv WS Out (ft) * 5432.68 * Weir Submerg * *
* Culv Nml Depth (ft) * 5.00 * Weir Max Depth (ft) * *
* Culv Crt Depth (ft) * 3.83 * Weir Avg Depth (ft) * *
* Culv Ful Lng (ft) * 3.10 * Min Top Rd (ft) * 5436.55 *

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

CROSS SECTION RIVER: RED CANON DRAW
EACH: MAIN STEM RS: 10

CROSS SECTION OUTPUT Profile #100 YR.

* W.S. Elev (ft) * 5428.04 * Element * Left OB * Channel * Right OB *
* Vel Head (ft) * 1.00 * Wt. n-Val. * * 0.040 * *

* E.G. Elev (ft)	* 5429.05 * Reach Len. (ft)	* 566.42 *	566.82 *	567.37 *
* Crit W.S. (ft)	* 5428.04 * Flow Area (sq ft)	* *	115.24 *	*
E.G. Slope (ft/ft)	* 0.019457 * Area (sq ft)	* *	115.24 *	*
Q Total (cfs)	* 926.00 * Flow (cfs)	* *	926.00 *	*
* Top Width (ft)	* 58.92 * Top Width (ft)	* *	58.92 *	*
* Vel Total (ft/s)	* 8.04 * Avg. Vel. (ft/s)	* *	8.04 *	*
Max Chl Dpth (ft)	* 3.44 * Hydr. Depth (ft)	* *	1.96 *	*
* Conv. Total (cfs)	* 6638.6 * Conv. (cfs)	* *	6638.6 *	*
* Length Wtd. (ft)	* 566.82 * Wetted Per. (ft)	* *	59.68 *	*
Min Ch El (ft)	* 5424.60 * Shear (lb/sq ft)	* *	2.35 *	*
Alpha	* 1.00 * Stream Power (lb/ft s)	* *	18.85 *	*
* Frctn Loss (ft)	* 5.47 * Cum Volume (acre-ft)	* 1.05 *	79.99 *	1.13 *
C & E Loss (ft)	* 0.21 * Cum SA (acres)	* 0.29 *	15.87 *	0.30 *

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #50 YR.

W.S. Elev (ft)	* 5427.76 * Element	* Left OB *	Channel *	Right OB *
Vel Head (ft)	* 0.87 * Wt. n-Val.	* *	0.040 *	*
* E.G. Elev (ft)	* 5428.63 * Reach Len. (ft)	* 566.42 *	566.82 *	567.37 *
* Crit W.S. (ft)	* 5427.76 * Flow Area (sq ft)	* *	99.02 *	*
E.G. Slope (ft/ft)	* 0.019287 * Area (sq ft)	* *	99.02 *	*
* Q Total (cfs)	* 740.00 * Flow (cfs)	* *	740.00 *	*
* Top Width (ft)	* 56.09 * Top Width (ft)	* *	56.09 *	*
* Vel Total (ft/s)	* 7.47 * Avg. Vel. (ft/s)	* *	7.47 *	*
Max Chl Dpth (ft)	* 3.16 * Hydr. Depth (ft)	* *	1.77 *	*
* Conv. Total (cfs)	* 5328.5 * Conv. (cfs)	* *	5328.5 *	*
Length Wtd. (ft)	* 566.82 * Wetted Per. (ft)	* *	56.79 *	*
Min Ch El (ft)	* 5424.60 * Shear (lb/sq ft)	* *	2.10 *	*
* Alpha	* 1.00 * Stream Power (lb/ft s)	* *	15.69 *	*
* Frctn Loss (ft)	* 5.56 * Cum Volume (acre-ft)	* 0.73 *	72.65 *	0.79 *
C & E Loss (ft)	* 0.18 * Cum SA (acres)	* 0.24 *	15.70 *	0.26 *

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

CROSS SECTION OUTPUT Profile #10 YR.

```
*****
| W.S. Elev (ft)      * 5427.26 * Element      * Left OB * Channel * Right OB *
| Vel Head (ft)       * 0.50 * Wt. n-Val.      *           * 0.040 *      *
* E.G. Elev (ft)      * 5427.76 * Reach Len. (ft) * 566.42 * 566.82 * 567.37 *
| Crit W.S. (ft)      * 5427.10 * Flow Area (sq ft) *           * 72.21 *      *
| E.G. Slope (ft/ft)   * 0.015142 * Area (sq ft)  *           * 72.21 *      *
* Q Total (cfs)       * 408.00 * Flow (cfs)      *           * 408.00 *      *
* Top Width (ft)       * 51.97 * Top Width (ft)      *           * 51.97 *      *
| Vel Total (ft/s)    * 5.65 * Avg. Vel. (ft/s)    *           * 5.65 *      *
| Max Chl Dpth (ft)   * 2.66 * Hydr. Depth (ft)    *           * 1.39 *      *
* Conv. Total (cfs)   * 3315.6 * Conv. (cfs)      *           * 3315.6 *      *
| Length Wtd. (ft)    * 566.82 * Wetted Per. (ft)    *           * 52.54 *      *
| Min Ch El (ft)      * 5424.60 * Shear (lb/sq ft)  *           * 1.30 *      *
* Alpha                * 1.00 * Stream Power (lb/ft s) *           * 7.34 *      *
| Frctn Loss (ft)     * 10.93 * Cum Volume (acre-ft) * 0.25 * 26.32 * 0.26 *
| C & E Loss (ft)      * 0.02 * Cum SA (acres)      * 0.14 * 8.69 * 0.15 *
*****
```

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION
EACH: MAIN STEM

RIVER: RED CANON DRAW
RS: 9

CROSS SECTION OUTPUT Profile #100 YR.

```
*****
| W.S. Elev (ft)      * 5417.72 * Element      * Left OB * Channel * Right OB *
| Vel Head (ft)       * 0.31 * Wt. n-Val.      *           * 0.040 *      *
| E.G. Elev (ft)      * 5418.03 * Reach Len. (ft) * 795.97 * 776.33 * 829.69 *
| Crit W.S. (ft)      * 5417.04 * Flow Area (sq ft) *           * 206.83 *      *
| E.G. Slope (ft/ft)   * 0.005750 * Area (sq ft)  *           * 206.83 *      *
| Q Total (cfs)       * 926.00 * Flow (cfs)      *           * 926.00 *      *
* Top Width (ft)       * 102.44 * Top Width (ft)      *           * 102.44 *      *
| Vel Total (ft/s)    * 4.48 * Avg. Vel. (ft/s)    *           * 4.48 *      *
| Max Chl Dpth (ft)   * 2.72 * Hydr. Depth (ft)    *           * 2.02 *      *
| Conv. Total (cfs)   * 12211.5 * Conv. (cfs)      *           * 12211.5 *      *
* Length Wtd. (ft)    * 776.33 * Wetted Per. (ft)    *           * 103.22 *      *
| Min Ch El (ft)      * 5415.00 * Shear (lb/sq ft)  *           * 0.72 *      *
| Alpha                * 1.00 * Stream Power (lb/ft s) *           * 3.22 *      *
| Frctn Loss (ft)     * 7.31 * Cum Volume (acre-ft) * 1.05 * 77.89 * 1.13 *
| C & E Loss (ft)      * 0.10 * Cum SA (acres)      * 0.29 * 14.82 * 0.30 *
*****
```

Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

CROSS SECTION OUTPUT Profile #50 YR.

```
*****
| W.S. Elev (ft)      * 5417.43 * Element      * Left OB * Channel * Right OB *
| Vel Head (ft)       * 0.27 * Wt. n-Val.      *           * 0.040 *      *
| E.G. Elev (ft)      * 5417.70 * Reach Len. (ft) * 795.97 * 776.33 * 829.69 *
| Crit W.S. (ft)      * 5416.82 * Flow Area (sq ft) *           * 177.86 *      *
```

* E.G. Slope (ft/ft)	* 0.005931 * Area (sq ft)	*	*	177.86 *	*
* Q Total (cfs)	* 740.00 * Flow (cfs)	*	*	740.00 *	*
Top Width (ft)	* 100.75 * Top Width (ft)	*	*	100.75 *	*
Vel Total (ft/s)	* 4.16 * Avg. Vel. (ft/s)	*	*	4.16 *	*
* Max Chl Dpth (ft)	* 2.43 * Hydr. Depth (ft)	*	*	1.77 *	*
Conv. Total (cfs)	* 9608.8 * Conv. (cfs)	*	*	9608.8 *	*
Length Wtd. (ft)	* 776.33 * Wetted Per. (ft)	*	*	101.41 *	*
* Min Ch El (ft)	* 5415.00 * Shear (lb/sq ft)	*	*	0.65 *	*
* Alpha	* 1.00 * Stream Power (lb/ft s)	*	*	2.70 *	*
Frctn Loss (ft)	* 7.56 * Cum Volume (acre-ft)	*	0.73 *	70.85 *	0.79 *
C & E Loss (ft)	* 0.10 * Cum SA (acres)	*	0.24 *	14.68 *	0.26 *

Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #10 YR.

W.S. Elev (ft)	* 5416.38 * Element	*	Left OB	Channel	Right OB	*
Vel Head (ft)	* 0.44 * Wt. n-Val.	*	*	0.040 *	*	
* E.G. Elev (ft)	* 5416.82 * Reach Len. (ft)	*	795.97 *	776.33 *	829.69 *	
* Crit W.S. (ft)	* 5416.38 * Flow Area (sq ft)	*	*	76.51 *	*	
E.G. Slope (ft/ft)	* 0.025339 * Area (sq ft)	*	*	76.51 *	*	
Q Total (cfs)	* 408.00 * Flow (cfs)	*	*	408.00 *	*	
Top Width (ft)	* 89.10 * Top Width (ft)	*	*	89.10 *	*	
Vel Total (ft/s)	* 5.33 * Avg. Vel. (ft/s)	*	*	5.33 *	*	
Max Chl Dpth (ft)	* 1.38 * Hydr. Depth (ft)	*	*	0.86 *	*	
Conv. Total (cfs)	* 2563.1 * Conv. (cfs)	*	*	2563.1 *	*	
Length Wtd. (ft)	* 776.33 * Wetted Per. (ft)	*	*	89.35 *	*	
Min Ch El (ft)	* 5415.00 * Shear (lb/sq ft)	*	*	1.35 *	*	
* Alpha	* 1.00 * Stream Power (lb/ft s)	*	*	7.22 *	*	
* Frctn Loss (ft)	* 4.52 * Cum Volume (acre-ft)	*	0.25 *	25.35 *	0.26 *	
C & E Loss (ft)	* 0.06 * Cum SA (acres)	*	0.14 *	7.77 *	0.15 *	

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

CROSS SECTION RIVER: RED CANON DRAW
REACH: MAIN STEM RS: 8

CROSS SECTION OUTPUT Profile #100 YR.

W.S. Elev (ft)	* 5409.30 * Element	*	Left OB	Channel	Right OB	*
* Vel Head (ft)	* 1.32 * Wt. n-Val.	*	*	0.040 *	*	
E.G. Elev (ft)	* 5410.62 * Reach Len. (ft)	*	563.24 *	284.34 *	77.07 *	

* Crit W.S. (ft)	* 5409.30 * Flow Area (sq ft)	*	*	100.55 *	*
* E.G. Slope (ft/ft)	* 0.018129 * Area (sq ft)	*	*	100.55 *	*
Q Total (cfs)	* 926.00 * Flow (cfs)	*	*	926.00 *	*
Top Width (ft)	* 38.34 * Top Width (ft)	*	*	38.34 *	*
* Vel Total (ft/s)	* 9.21 * Avg. Vel. (ft/s)	*	*	9.21 *	*
Max Chl Dpth (ft)	* 5.30 * Hydr. Depth (ft)	*	*	2.62 *	*
Conv. Total (cfs)	* 6877.3 * Conv. (cfs)	*	*	6877.3 *	*
* Length Wtd. (ft)	* 284.34 * Wetted Per. (ft)	*	*	40.24 *	*
* Min Ch El (ft)	* 5404.00 * Shear (lb/sq ft)	*	*	2.83 *	*
Alpha	* 1.00 * Stream Power (lb/ft s)	*	*	26.04 *	*
* Frctn Loss (ft)	* 0.01 * Cum Volume (acre-ft)	*	1.05 *	75.15 *	1.13 *
* C & E Loss (ft)	* 0.39 * Cum SA (acres)	*	0.29 *	13.56 *	0.30 *

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #50 YR.

* W.S. Elev (ft)	* 5408.79 * Element	*	Left OB	Channel	Right OB *
Vel Head (ft)	* 1.25 * Wt. n-Val.	*	*	0.040 *	*
E.G. Elev (ft)	* 5410.04 * Reach Len. (ft)	*	563.24 *	284.34 *	77.07 *
* Crit W.S. (ft)	* 5408.79 * Flow Area (sq ft)	*	*	82.32 *	*
E.G. Slope (ft/ft)	* 0.018839 * Area (sq ft)	*	*	82.32 *	*
Q Total (cfs)	* 740.00 * Flow (cfs)	*	*	740.00 *	*
* Top Width (ft)	* 33.41 * Top Width (ft)	*	*	33.41 *	*
* Vel Total (ft/s)	* 8.99 * Avg. Vel. (ft/s)	*	*	8.99 *	*
Max Chl Dpth (ft)	* 4.79 * Hydr. Depth (ft)	*	*	2.46 *	*
Conv. Total (cfs)	* 5391.3 * Conv. (cfs)	*	*	5391.3 *	*
* Length Wtd. (ft)	* 284.34 * Wetted Per. (ft)	*	*	35.16 *	*
Min Ch El (ft)	* 5404.00 * Shear (lb/sq ft)	*	*	2.75 *	*
Alpha	* 1.00 * Stream Power (lb/ft s)	*	*	24.75 *	*
* Frctn Loss (ft)	* 0.01 * Cum Volume (acre-ft)	*	0.73 *	68.53 *	0.79 *
* C & E Loss (ft)	* 0.38 * Cum SA (acres)	*	0.24 *	13.48 *	0.26 *

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #10 YR.

* W.S. Elev (ft)	* 5409.64 * Element	*	Left OB	Channel	Right OB *
------------------	---------------------	---	---------	---------	------------

* Vel Head (ft)	* 0.20 * Wt. n-Val.	*	*	0.040 *	*
* E.G. Elev (ft)	* 5409.84 * Reach Len. (ft)	*	563.24 *	284.34 *	77.07 *
Crit W.S. (ft)	* * Flow Area (sq ft)	*	*	114.19 *	*
E.G. Slope (ft/ft)	* 0.002623 * Area (sq ft)	*	*	114.19 *	*
* Q Total (cfs)	* 408.00 * Flow (cfs)	*	*	408.00 *	*
Top Width (ft)	* 42.39 * Top Width (ft)	*	*	42.39 *	*
Vel Total (ft/s)	* 3.57 * Avg. Vel. (ft/s)	*	*	3.57 *	*
* Max Chl Dpth (ft)	* 5.64 * Hydr. Depth (ft)	*	*	2.69 *	*
* Conv. Total (cfs)	* 7966.5 * Conv. (cfs)	*	*	7966.5 *	*
Length Wtd. (ft)	* 284.34 * Wetted Per. (ft)	*	*	44.36 *	*
Min Ch El (ft)	* 5404.00 * Shear (lb/sq ft)	*	*	0.42 *	*
* Alpha	* 1.00 * Stream Power (lb/ft s)	*	*	1.51 *	*
Frctn Loss (ft)	* 1.61 * Cum Volume (acre-ft)	*	0.25 *	23.65 *	0.26 *
C & E Loss (ft)	* 0.06 * Cum SA (acres)	*	0.14 *	6.60 *	0.15 *

arning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections.

ROSS SECTION RIVER: RED CANON DRAW
REACH: MAIN STEM RS: 7

CROSS SECTION OUTPUT Profile #100 YR

W.S. Elev (ft)	* 5407.87 * Element	* Left OB *	Channel *	Right OB *
Vel Head (ft)	* 0.00 * Wt. n-Val.	* *	* 0.040 *	* *
* E.G. Elev (ft)	* 5407.87 * Reach Len. (ft)	* 798.86 *	805.52 *	813.65 *
Crit W.S. (ft)	* 5407.87 * Flow Area (sq ft)	* *	2596.68 *	* *
E.G. Slope (ft/ft)	* 0.000013 * Area (sq ft)	* *	2596.68 *	* *
* Q Total (cfs)	* 926.00 * Flow (cfs)	* *	926.00 *	* *
* Top Width (ft)	* 580.88 * Top Width (ft)	* *	580.88 *	* *
Vel Total (ft/s)	* 0.36 * Avg. Vel. (ft/s)	* *	0.36 *	* *
Max Chl Dpth (ft)	* 8.87 * Hydr. Depth (ft)	* *	4.47 *	* *
* Conv. Total (cfs)	* 260806.4 * Conv. (cfs)	* *	260806.4 *	* *
Length Wtd. (ft)	* 805.52 * Wetted Per. (ft)	* *	584.08 *	* *
Min Ch El (ft)	* 5399.00 * Shear (lb/sq ft)	* *	0.00 *	* *
* Alpha	* 1.00 * Stream Power (lb/ft s)	* *	0.00 *	* *
* Frctn Loss (ft)	* 0.00 * Cum Volume (acre-ft)	* 1.05 *	66.35 *	1.13 *
C & E Loss (ft)	* 0.00 * Cum SA (acres)	* 0.29 *	11.54 *	0.30 *

arning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

arning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

CROSS SECTION OUTPUT Profile #50 YR.

```
*****
| W.S. Elev (ft)      * 5407.87 * Element      * Left OB * Channel * Right OB *
| Vel Head (ft)       * 0.00 * Wt. n-Val.      *           * 0.040 *      *
| * E.G. Elev (ft)    * 5407.87 * Reach Len. (ft) * 798.86 * 805.52 * 813.65 *
| Crit W.S. (ft)      * 5407.87 * Flow Area (sq ft) *           * 2596.68 *
| E.G. Slope (ft/ft)  * 0.000008 * Area (sq ft)      *           * 2596.68 *
| * Q Total (cfs)    * 740.00 * Flow (cfs)      *           * 740.00 *
| * Top Width (ft)   * 580.88 * Top Width (ft)      *           * 580.88 *
| Vel Total (ft/s)   * 0.28 * Avg. Vel. (ft/s)      *           * 0.28 *
| Max Chl Dpth (ft) * 8.87 * Hydr. Depth (ft)      *           * 4.47 *
| * Conv. Total (cfs)* 260806.4 * Conv. (cfs)      *           * 260806.4 *
| Length Wtd. (ft)   * 805.52 * Wetted Per. (ft)      *           * 584.08 *
| Min Ch El (ft)     * 5399.00 * Shear (lb/sq ft)      *           * 0.00 *
| * Alpha             * 1.00 * Stream Power (lb/ft s) *           * 0.00 *
| * Frctn Loss (ft)  * 0.00 * Cum Volume (acre-ft) * 0.73 * 59.79 * 0.79 *
| C & E Loss (ft)    * 0.00 * Cum SA (acres)      * 0.24 * 11.48 * 0.26 *
*****
```

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

Note - Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

ROSS SECTION OUTPUT Profile #10 YR.

```
*****
| W.S. Elev (ft)      * 5407.33 * Element      * Left OB * Channel * Right OB *
| Vel Head (ft)       * 0.83 * Wt. n-Val.      *           * 0.040 *      *
| E.G. Elev (ft)      * 5408.16 * Reach Len. (ft) * 798.86 * 805.52 * 813.65 *
| * Crit W.S. (ft)    * 5407.33 * Flow Area (sq ft) *           * 55.75 *
| E.G. Slope (ft/ft)  * 0.020265 * Area (sq ft)      *           * 55.75 *
| Q Total (cfs)      * 408.00 * Flow (cfs)      *           * 408.00 *
| * Top Width (ft)   * 33.16 * Top Width (ft)      *           * 33.16 *
| Vel Total (ft/s)   * 7.32 * Avg. Vel. (ft/s)      *           * 7.32 *
| Max Chl Dpth (ft) * 8.33 * Hydr. Depth (ft)      *           * 1.68 *
| Conv. Total (cfs)  * 2866.0 * Conv. (cfs)      *           * 2866.0 *
| Length Wtd. (ft)   * 805.52 * Wetted Per. (ft)      *           * 34.24 *
| Min Ch El (ft)     * 5399.00 * Shear (lb/sq ft)      *           * 2.06 *
| Alpha               * 1.00 * Stream Power (lb/ft s) *           * 15.08 *
| * Frctn Loss (ft)  * 0.01 * Cum Volume (acre-ft) * 0.25 * 23.09 * 0.26 *
| C & E Loss (ft)    * 0.25 * Cum SA (acres)      * 0.14 * 6.35 * 0.15 *
*****
```

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

ote - Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

ROSS SECTION RIVER: RED CANON DRAW
REACH: MAIN STEM RS: 6

CROSS SECTION OUTPUT Profile #100 YR.

```
*****
* W.S. Elev (ft)      * 5403.17 * Element      * Left OB * Channel * Right OB *
* Vel Head (ft)       * 0.00 * Wt. n-Val.      * 0.060 * 0.040 * 0.060 *
* E.G. Elev (ft)       * 5403.17 * Reach Len. (ft)  * 100.09 * 99.55 * 99.29 *
* Crit W.S. (ft)       * 5393.91 * Flow Area (sq ft)  * 102.14 * 3849.34 * 107.45 *
* E.G. Slope (ft/ft)    * 0.000000 * Area (sq ft)    * 102.14 * 3849.34 * 107.45 *
* Q Total (cfs)        * 160.00 * Flow (cfs)      * 1.63 * 156.62 * 1.75 *
* Top Width (ft)        * 547.49 * Top Width (ft)    * 28.13 * 490.85 * 28.51 *
* Vel Total (ft/s)      * 0.04 * Avg. Vel. (ft/s)    * 0.02 * 0.04 * 0.02 *
* Max Chl Dpth (ft)      * 11.17 * Hydr. Depth (ft)    * 3.63 * 7.84 * 3.77 *
* Conv. Total (cfs)      * 575957.2 * Conv. (cfs)    * 5850.8 * 563796.8 * 6309.6 *
* Length Wtd. (ft)        * 99.55 * Wetted Per. (ft)    * 29.03 * 491.68 * 29.43 *
* Min Ch El (ft)        * 5392.00 * Shear (lb/sq ft)  * 0.00 * 0.00 * 0.00 *
* Alpha                 * 1.05 * Stream Power (lb/ft s) * 0.00 * 0.00 * 0.00 *
* Frctn Loss (ft)        * * Cum Volume (acre-ft)    * 0.12 * 6.75 * 0.12 *
* C & E Loss (ft)        * * Cum SA (acres)      * 0.03 * 1.63 * 0.03 *
*****
```

CROSS SECTION OUTPUT Profile #50 YR.

```
*****
* W.S. Elev (ft)      * 5401.98 * Element      * Left OB * Channel * Right OB *
* Vel Head (ft)       * 0.00 * Wt. n-Val.      * 0.060 * 0.040 * 0.060 *
* E.G. Elev (ft)       * 5401.98 * Reach Len. (ft)  * 100.09 * 99.55 * 99.29 *
* Crit W.S. (ft)       * 5393.78 * Flow Area (sq ft)  * 71.17 * 3261.66 * 75.35 *
* E.G. Slope (ft/ft)    * 0.000000 * Area (sq ft)    * 71.17 * 3261.66 * 75.35 *
* Q Total (cfs)        * 134.00 * Flow (cfs)      * 1.11 * 131.71 * 1.18 *
* Top Width (ft)        * 539.38 * Top Width (ft)    * 23.56 * 490.85 * 24.97 *
* Vel Total (ft/s)      * 0.04 * Avg. Vel. (ft/s)    * 0.02 * 0.04 * 0.02 *
* Max Chl Dpth (ft)      * 9.98 * Hydr. Depth (ft)    * 3.02 * 6.64 * 3.02 *
* Conv. Total (cfs)      * 435202.2 * Conv. (cfs)    * 3607.4 * 427770.1 * 3824.7 *
* Length Wtd. (ft)        * 99.55 * Wetted Per. (ft)    * 24.31 * 491.68 * 25.67 *
* Min Ch El (ft)        * 5392.00 * Shear (lb/sq ft)  * 0.00 * 0.00 * 0.00 *
* Alpha                 * 1.04 * Stream Power (lb/ft s) * 0.00 * 0.00 * 0.00 *
* Frctn Loss (ft)        * * Cum Volume (acre-ft)    * 0.08 * 5.62 * 0.09 *
* C & E Loss (ft)        * * Cum SA (acres)      * 0.03 * 1.57 * 0.03 *
*****
```

CROSS SECTION OUTPUT Profile #10 YR.

```
*****
* W.S. Elev (ft)      * 5399.46 * Element      * Left OB * Channel * Right OB *
* Vel Head (ft)       * 0.00 * Wt. n-Val.      * 0.060 * 0.040 * 0.060 *
* E.G. Elev (ft)       * 5399.46 * Reach Len. (ft)  * 100.09 * 99.55 * 99.29 *
* Crit W.S. (ft)       * 5393.64 * Flow Area (sq ft)  * 24.17 * 2025.67 * 25.01 *
* E.G. Slope (ft/ft)    * 0.000000 * Area (sq ft)    * 24.17 * 2025.67 * 25.01 *
* Q Total (cfs)        * 110.00 * Flow (cfs)      * 0.48 * 109.03 * 0.49 *
* Top Width (ft)        * 519.14 * Top Width (ft)    * 13.75 * 490.85 * 14.54 *
* Vel Total (ft/s)      * 0.05 * Avg. Vel. (ft/s)    * 0.02 * 0.05 * 0.02 *
* Max Chl Dpth (ft)      * 7.46 * Hydr. Depth (ft)    * 1.76 * 4.13 * 1.72 *
* Conv. Total (cfs)      * 195113.7 * Conv. (cfs)    * 854.2 * 193386.7 * 872.8 *
*****
```

* Length Wtd. (ft)	* 99.55	* Wetted Per. (ft)	* 14.18	* 491.68	* 14.95
* Min Ch El (ft)	* 5392.00	* Shear (lb/sq ft)	* 0.00	* 0.00	* 0.00
Alpha	* 1.02	* Stream Power (lb/ft s)	* 0.00	* 0.00	* 0.00
Frctn Loss (ft)	* *	* Cum Volume (acre-ft)	* 0.03	* 3.85	* 0.03
* C & E Loss (ft)	* *	* Cum SA (acres)	* 0.02	* 1.51	* 0.02

CULVERT RIVER: RED CANON DRAW
REACH: MAIN STEM RS: 5.5

CULVERT OUTPUT Profile #100 YR.

ulvert ID : BASIN CLVRT.

```
*****
* Culv Q (cfs)      * 144.02 * Culv Vel In (ft/s) * 14.97 *
* # Barrels          * 1 * Culv Vel Out (ft/s) * 14.97 *
* Q Barrel (cfs)    * 144.02 * Culv Inv El Up (ft) * 5392.00 *
* W.S. US. (ft)      * 5403.17 * Culv Inv El Dn (ft) * 5388.85 *
* E.G. US. (ft)      * 5403.17 * Culv Frctn Ls (ft) * 1.51 *
Delta WS (ft)      * 6.73 * Culv Ext Lss (ft) * 3.46 *
Delta EG (ft)      * 6.71 * Culv Ent Lss (ft) * 1.74 *
* E.G. IC (ft)      * 5403.17 * Q Weir (cfs) * 15.98 *
E.G. OC (ft)        * 5402.94 * Weir Sta Lft (ft) * 177.13 *
Culv WS In (ft)    * 5395.50 * Weir Sta Rgt (ft) * 201.47 *
* Culv WS Out (ft)  * 5392.35 * Weir Submerg * 0.00 *
* Culv Nml Depth (ft) * 2.02 * Weir Max Depth (ft) * 0.43 *
Culv Crt Depth (ft) * 3.50 * Weir Avg Depth (ft) * 0.39 *
* Culv Ful Lngh (ft) * 62.05 * Min Top Rd (ft) * 5402.74 *
*****
```

arning - During subcritical analysis, while trying to calculate culvert and weir flow, the program could not get a balance of energy within the specified tolerance and number of trials. The program used the solution with the minimum error.

Note - Culvert critical depth exceeds the height of the culvert.

Note - During the supercritical calculations a hydraulic jump occurred inside of the culvert.

Note - The culvert inlet is submerged and the culvert flows full over part or all of its length. Therefore, the culvert inlet equations are not valid and the supercritical result has been discarded. The outlet answer will be used.

ULVERT OUTPUT Profile #50 YR.

ulvert ID : BASIN CLVRT.

```
*****
* Culv Q (cfs)      * 134.00 * Culv Vel In (ft/s)  * 13.93 *
* # Barrels          * 1 * Culv Vel Out (ft/s)  * 21.87 *
* Q Barrel (cfs)    * 134.00 * Culv Inv El Up (ft) * 5392.00 *
* W.S. US. (ft)      * 5401.98 * Culv Inv El Dn (ft) * 5388.85 *
* E.G. US. (ft)      * 5401.98 * Culv Frctn Ls (ft) * 2.06 *
* Delta WS (ft)     * 7.47 * Culv Ext Lss (ft)  * 3.87 *
* Delta EG (ft)     * 7.44 * Culv Ent Lss (ft)  * 1.51 *
* E.G. IC (ft)       * 5401.98 * Q Weir (cfs)  *      *
* E.G. OC (ft)       * 5400.13 * Weir Sta Lft (ft) *      *
* Culv WS In (ft)   * 5395.50 * Weir Sta Rgt (ft) *      *
* Culv WS Out (ft)  * 5390.98 * Weir Submerg  *      *
Culv Nml Depth (ft) * 1.93 * Weir Max Depth (ft) *      *
Culv Crt Depth (ft) * 3.50 * Weir Avg Depth (ft) *      *
* Culv Ful Lng (ft) * 62.05 * Min Top Rd (ft)  * 5402.74 *
```

Warning - Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.

note - Culvert critical depth exceeds the height of the culvert.

Note - The flow in the culvert is entirely supercritical.

ULVERT OUTPUT Profile #10 YR.

Culvert ID : BASIN CLVRT.

```
*****
Culv Q (cfs)      * 110.00 * Culv Vel In (ft/s) * 11.43 *
* # Barrels        * 1 * Culv Vel Out (ft/s) * 19.67 *
* Q Barrel (cfs)   * 110.00 * Culv Inv El Up (ft) * 5392.00 *
W.S. US. (ft)      * 5399.46 * Culv Inv El Dn (ft) * 5388.85 *
E.G. US. (ft)      * 5399.46 * Culv Frctn Ls (ft) * 1.61 *
* Delta WS (ft)    * 6.44 * Culv Ext Lss (ft) * 3.77 *
Delta EG (ft)      * 6.40 * Culv Ent Lss (ft) * 1.01 *
E.G. IC (ft)       * 5399.46 * Q Weir (cfs) *
* E.G. OC (ft)     * 5398.53 * Weir Sta Lft (ft) *
* Culv WS In (ft)  * 5395.50 * Weir Sta Rgt (ft) *
Culv WS Out (ft)   * 5390.82 * Weir Submerg *
* Culv Nml Depth (ft) * 1.72 * Weir Max Depth (ft) *
* Culv Crt Depth (ft) * 3.17 * Weir Avg Depth (ft) *
Culv Ful Lng (ft)  * 17.28 * Min Top Rd (ft) * 5402.74 *
*****
```

Warning - Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.

Note - The flow in the culvert is entirely supercritical.

ROSS SECTION Profile #100 YR.

RIVER: RED CANON DRAW

REACH: MAIN STEM

RS: 5

ROSS SECTION OUTPUT Profile #100 YR.

```
*****
* W.S. Elev (ft)      * 5396.45 * Element      * Left OB * Channel * Right OB *
Vel Head (ft)       * 0.02 * Wt. n-Val.      *      * 0.040 *
* E.G. Elev (ft)      * 5396.46 * Reach Len. (ft) * 355.29 * 348.49 * 357.94 *
* Crit W.S. (ft)      * 5390.49 * Flow Area (sq ft) *      * 158.35 *
E.G. Slope (ft/ft)   * 0.000104 * Area (sq ft)  *      * 158.35 *
Q Total (cfs)       * 160.00 * Flow (cfs)    *      * 160.00 *
* Top Width (ft)     * 29.62 * Top Width (ft) *      * 29.62 *
Vel Total (ft/s)    * 1.01 * Avg. Vel. (ft/s) *      * 1.01 *
Max Chl Dpth (ft)   * 7.60 * Hydr. Depth (ft) *      * 5.35 *
* Conv. Total (cfs)  * 15687.3 * Conv. (cfs) *      * 15687.3 *
* Length Wtd. (ft)   * 348.49 * Wetted Per. (ft) *      * 36.36 *
Min Ch El (ft)      * 5388.85 * Shear (lb/sq ft) *      * 0.03 *
Alpha                * 1.00 * Stream Power (lb/ft s) *      * 0.03 *
* Frctn Loss (ft)    *      * Cum Volume (acre-ft) *      * 2.17 *
C & E Loss (ft)      *      * Cum SA (acres)    *      * 1.04 *
*****
```

CROSS SECTION OUTPUT Profile #50 YR.

```
*****
* W.S. Elev (ft)      * 5394.51 * Element      * Left OB * Channel * Right OB *
* Vel Head (ft)       * 0.03 * Wt. n-Val.      *      * 0.040 *
E.G. Elev (ft)       * 5394.54 * Reach Len. (ft) * 355.29 * 348.49 * 357.94 *
Crit W.S. (ft)       * 5390.30 * Flow Area (sq ft) *      * 104.94 *
* E.G. Slope (ft/ft)  * 0.000228 * Area (sq ft)  *      * 104.94 *
Q Total (cfs)       * 134.00 * Flow (cfs)    *      * 134.00 *
Top Width (ft)       * 25.47 * Top Width (ft) *      * 25.47 *
* Vel Total (ft/s)   * 1.28 * Avg. Vel. (ft/s) *      * 1.28 *
Max Chl Dpth (ft)   * 5.66 * Hydr. Depth (ft) *      * 4.12 *
*****
```

* Conv. Total (cfs)	*	8880.6	*	Conv. (cfs)	*	*	8880.6	*	*
* Length Wtd. (ft)	*	348.49	*	Wetted Per. (ft)	*	*	30.52	*	*
Min Ch El (ft)	*	5388.85	*	Shear (lb/sq ft)	*	*	0.05	*	*
Alpha	*	1.00	*	Stream Power (lb/ft s)	*	*	0.06	*	*
* Frctn Loss (ft)	*		*	Cum Volume (acre-ft)	*	*	1.77	*	*
C & E Loss (ft)	*		*	Cum SA (acres)	*	*	0.98	*	*

CROSS SECTION OUTPUT Profile #10 YR.

W.S. Elev (ft)	*	5393.02	*	Element	*	Left OB	*	Channel	*	Right OB	*
* Vel Head (ft)	*	0.04	*	Wt. n-Val.	*	*	0.040	*	*		*
E.G. Elev (ft)	*	5393.06	*	Reach Len. (ft)	*	355.29	*	348.49	*	357.94	*
Crit W.S. (ft)	*	5390.12	*	Flow Area (sq ft)	*	*	69.61	*	*		*
* E.G. Slope (ft/ft)	*	0.000482	*	Area (sq ft)	*	*	69.61	*	*		*
Q Total (cfs)	*	110.00	*	Flow (cfs)	*	*	110.00	*	*		*
Top Width (ft)	*	21.94	*	Top Width (ft)	*	*	21.94	*	*		*
* Vel Total (ft/s)	*	1.58	*	Avg. Vel. (ft/s)	*	*	1.58	*	*		*
* Max Chl Dpth (ft)	*	4.17	*	Hydr. Depth (ft)	*	*	3.17	*	*		*
Conv. Total (cfs)	*	5011.9	*	Conv. (cfs)	*	*	5011.9	*	*		*
Length Wtd. (ft)	*	348.49	*	Wetted Per. (ft)	*	*	25.79	*	*		*
* Min Ch El (ft)	*	5388.85	*	Shear (lb/sq ft)	*	*	0.08	*	*		*
Alpha	*	1.00	*	Stream Power (lb/ft s)	*	*	0.13	*	*		*
Frctn Loss (ft)	*		*	Cum Volume (acre-ft)	*	*	1.45	*	*		*
* C & E Loss (ft)	*		*	Cum SA (acres)	*	*	0.92	*	*		*

CULVERT RIVER: RED CANON DRAW
REACH: MAIN STEM RS: 4.5

CULVERT OUTPUT Profile #100 YR.

Culvert ID : SOUTH STREET

* Culv Q (cfs)	*	160.00	*	Culv Vel In (ft/s)	*	12.73	*
* # Barrels	*	1	*	Culv Vel Out (ft/s)	*	16.98	*
Q Barrel (cfs)	*	160.00	*	Culv Inv El Up (ft)	*	5387.35	*
W.S. US. (ft)	*	5396.45	*	Culv Inv El Dn (ft)	*	5386.70	*
* E.G. US. (ft)	*	5396.46	*	Culv Frctn Ls (ft)	*	1.22	*
Delta WS (ft)	*	6.31	*	Culv Ext Lss (ft)	*	3.47	*
Delta EG (ft)	*	5.95	*	Culv Ent Lss (ft)	*	1.26	*
* E.G. IC (ft)	*	5396.46	*	Q Weir (cfs)	*	*	
* E.G. OC (ft)	*	5395.08	*	Weir Sta Lft (ft)	*	*	
Culv WS In (ft)	*	5391.35	*	Weir Sta Rgt (ft)	*	*	
* Culv WS Out (ft)	*	5389.51	*	Weir Submerg	*	*	
* Culv Nml Depth (ft)	*	4.00	*	Weir Max Depth (ft)	*	*	
Culv Crt Depth (ft)	*	3.67	*	Weir Avg Depth (ft)	*	*	
Culv Ful Lngth (ft)	*		*	Min Top Rd (ft)	*	5397.57	*

Warning - Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

Note - The flow in the culvert is entirely supercritical.

CULVERT OUTPUT Profile #50 YR.

Culvert ID : SOUTH STREET

* Culv Q (cfs)	*	134.00	*	Culv Vel In (ft/s)	*	10.66	*
----------------	---	--------	---	--------------------	---	-------	---

```

* # Barrels      * 1 * Culv Vel Out (ft/s) * 14.64 *
* Q Barrel (cfs) * 134.00 * Culv Inv El Up (ft) * 5387.35 *
* W.S. US. (ft)  * 5394.51 * Culv Inv El Dn (ft) * 5386.70 *
* E.G. US. (ft)  * 5394.54 * Culv Frctn Ls (ft) * 0.89 *
* Delta WS (ft) * 4.64 * Culv Ext Lss (ft) * 2.56 *
* Delta EG (ft) * 4.33 * Culv Ent Lss (ft) * 0.88 *
* E.G. IC (ft)  * 5394.54 * Q Weir (cfs) * *
* E.G. OC (ft)  * 5393.95 * Weir Sta Lft (ft) * *
* Culv WS In (ft) * 5391.35 * Weir Sta Rgt (ft) * *
* Culv WS Out (ft) * 5389.43 * Weir Submrg * *
* Culv Nml Depth (ft) * 3.06 * Weir Max Depth (ft) * *
* Culv Crt Depth (ft) * 3.45 * Weir Avg Depth (ft) * *
* Culv Ful Lng (ft) * * Min Top Rd (ft) * 5397.57 *
*****

```

Warning - Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.

Note - The flow in the culvert is entirely supercritical.

LVERT OUTPUT Profile #10 YR.

lvert ID : SOUTH STREET

```

*****
* Culv Q (cfs)      * 110.00 * Culv Vel In (ft/s) * 10.30 *
* # Barrels          * 1 * Culv Vel Out (ft/s) * 11.87 *
* Q Barrel (cfs)    * 110.00 * Culv Inv El Up (ft) * 5387.35 *
* W.S. US. (ft)      * 5393.02 * Culv Inv El Dn (ft) * 5386.70 *
* E.G. US. (ft)      * 5393.06 * Culv Frctn Ls (ft) * 0.51 *
* Delta WS (ft)     * 3.45 * Culv Ext Lss (ft) * 1.79 *
* Delta EG (ft)     * 3.20 * Culv Ent Lss (ft) * 0.89 *
* E.G. IC (ft)      * 5393.06 * Q Weir (cfs) * *
* E.G. OC (ft)      * 5392.99 * Weir Sta Lft (ft) * *
* Culv WS In (ft)   * 5390.52 * Weir Sta Rgt (ft) * *
* Culv WS Out (ft)  * 5389.46 * Weir Submrg * *
* Culv Nml Depth (ft) * 2.62 * Weir Max Depth (ft) * *
* Culv Crt Depth (ft) * 3.17 * Weir Avg Depth (ft) * *
* Culv Ful Lng (ft) * * Min Top Rd (ft) * 5397.57 *
*****

```

Warning - Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.

Note - The flow in the culvert is entirely supercritical.

CROSS SECTION Profile #100 YR.

ACH: MAIN STEM

RS: 4

CROSS SECTION OUTPUT Profile #100 YR.

```

*****
* W.S. Elev (ft)      * 5390.13 * Element      * Left OB * Channel * Right OB *
* Vel Head (ft)       * 0.38 * Wt. n-Val.    * * 0.040 * *
* E.G. Elev (ft)       * 5390.51 * Reach Len. (ft) * 1046.61 * 1200.51 * 1414.44 *
* Crit W.S. (ft)       * * * Flow Area (sq ft) * * 32.41 * *
* E.G. Slope (ft/ft)   * 0.007187 * Area (sq ft) * * 32.41 * *
* Q Total (cfs)        * 160.00 * Flow (cfs)  * * 160.00 * *
* Top Width (ft)        * 12.85 * Top Width (ft) * * 12.85 * *
* Vel Total (ft/s)     * 4.94 * Avg. Vel. (ft/s) * * 4.94 * *
* Max Chl Dpth (ft)    * 2.78 * Hydr. Depth (ft) * * 2.52 * *
* Conv. Total (cfs)    * 1887.3 * Conv. (cfs)  * * 1887.3 * *
* Length Wtd. (ft)     * 1200.51 * Wetted Per. (ft) * * 16.51 * *
* Min Ch El (ft)       * 5387.35 * Shear (lb/sq ft) * * 0.88 * *

```

* Alpha	*	1.00 * Stream Power (lb/ft s)	*	*	4.35 *	*
* Frctn Loss (ft)	*	14.24 * Cum Volume (acre-ft)	*	*	1.41 *	*
C & E Loss (ft)	*	0.02 * Cum SA (acres)	*	*	0.87 *	*

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #50 YR.

W.S. Elev (ft)	*	5389.87 * Element	*	Left OB	*	Channel	*	Right OB	*
Vel Head (ft)	*	0.33 * Wt. n-Val.	*	*	*	0.040	*	*	*
* E.G. Elev (ft)	*	5390.20 * Reach Len. (ft)	*	1046.61	*	1200.51	*	1414.44	*
Crit W.S. (ft)	*	* Flow Area (sq ft)	*	*	*	29.06	*	*	*
E.G. Slope (ft/ft)	*	0.006915 * Area (sq ft)	*	*	*	29.06	*	*	*
* Q Total (cfs)	*	134.00 * Flow (cfs)	*	*	*	134.00	*	*	*
* Top Width (ft)	*	12.62 * Top Width (ft)	*	*	*	12.62	*	*	*
Vel Total (ft/s)	*	4.61 * Avg. Vel. (ft/s)	*	*	*	4.61	*	*	*
Max Chl Dpth (ft)	*	2.52 * Hydr. Depth (ft)	*	*	*	2.30	*	*	*
* Conv. Total (cfs)	*	1611.5 * Conv. (cfs)	*	*	*	1611.5	*	*	*
Length Wtd. (ft)	*	1200.51 * Wetted Per. (ft)	*	*	*	15.94	*	*	*
Min Ch El (ft)	*	5387.35 * Shear (lb/sq ft)	*	*	*	0.79	*	*	*
* Alpha	*	1.00 * Stream Power (lb/ft s)	*	*	*	3.63	*	*	*
* Frctn Loss (ft)	*	14.12 * Cum Volume (acre-ft)	*	*	*	1.24	*	*	*
C & E Loss (ft)	*	0.02 * Cum SA (acres)	*	*	*	0.82	*	*	*

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #10 YR.

W.S. Elev (ft)	*	5389.57 * Element	*	Left OB	*	Channel	*	Right OB	*
Vel Head (ft)	*	0.29 * Wt. n-Val.	*	*	*	0.040	*	*	*
* E.G. Elev (ft)	*	5389.86 * Reach Len. (ft)	*	1046.61	*	1200.51	*	1414.44	*
Crit W.S. (ft)	*	* Flow Area (sq ft)	*	*	*	25.25	*	*	*
E.G. Slope (ft/ft)	*	0.007033 * Area (sq ft)	*	*	*	25.25	*	*	*
* Q Total (cfs)	*	110.00 * Flow (cfs)	*	*	*	110.00	*	*	*
* Top Width (ft)	*	12.36 * Top Width (ft)	*	*	*	12.36	*	*	*
Vel Total (ft/s)	*	4.36 * Avg. Vel. (ft/s)	*	*	*	4.36	*	*	*
Max Chl Dpth (ft)	*	2.22 * Hydr. Depth (ft)	*	*	*	2.04	*	*	*
* Conv. Total (cfs)	*	1311.7 * Conv. (cfs)	*	*	*	1311.7	*	*	*
Length Wtd. (ft)	*	1200.51 * Wetted Per. (ft)	*	*	*	15.27	*	*	*
Min Ch El (ft)	*	5387.35 * Shear (lb/sq ft)	*	*	*	0.73	*	*	*
* Alpha	*	1.00 * Stream Power (lb/ft s)	*	*	*	3.16	*	*	*
* Frctn Loss (ft)	*	13.98 * Cum Volume (acre-ft)	*	*	*	1.08	*	*	*
C & E Loss (ft)	*	0.02 * Cum SA (acres)	*	*	*	0.78	*	*	*

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #100 YR.

```
*****  
* W.S. Elev (ft)      * 5375.69 * Element      * Left OB * Channel * Right OB *  
* Vel Head (ft)       * 0.57 * Wt. n-Val.      *          * 0.040 *          *  
* E.G. Elev (ft)       * 5376.26 * Reach Len. (ft) * 874.56 * 566.77 * 260.56 *  
* Crit W.S. (ft)       * 5375.68 * Flow Area (sq ft) *          * 26.34 *          *  
* E.G. Slope (ft/ft)   * 0.022885 * Area (sq ft)  *          * 26.34 *          *  
* Q Total (cfs)        * 160.00 * Flow (cfs)      *          * 160.00 *          *  
* Top Width (ft)        * 23.03 * Top Width (ft)    *          * 23.03 *          *  
* Vel Total (ft/s)     * 6.08 * Avg. Vel. (ft/s)  *          * 6.08 *          *  
* Max Chl Dpth (ft)    * 2.25 * Hydr. Depth (ft) *          * 1.14 *          *  
* Conv. Total (cfs)    * 1057.7 * Conv. (cfs)   *          * 1057.7 *          *  
* Length Wtd. (ft)     * 566.77 * Wetted Per. (ft) *          * 23.43 *          *  
* Min Ch El (ft)       * 5373.86 * Shear (lb/sq ft) *          * 1.61 *          *  
* Alpha                * 1.00 * Stream Power (lb/ft s) *          * 9.76 *          *  
* Frctn Loss (ft)      * 8.19 * Cum Volume (acre-ft) *          * 0.60 *          *  
* C & E Loss (ft)       * 0.04 * Cum SA (acres)   *          * 0.37 *          *  
*****
```

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

Note - Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

CROSS SECTION OUTPUT Profile #50 YR.

```
*****  
* W.S. Elev (ft)      * 5375.53 * Element      * Left OB * Channel * Right OB *  
* Vel Head (ft)       * 0.54 * Wt. n-Val.      *          * 0.040 *          *  
* E.G. Elev (ft)       * 5376.07 * Reach Len. (ft) * 874.56 * 566.77 * 260.56 *  
* Crit W.S. (ft)       * 5375.53 * Flow Area (sq ft) *          * 22.75 *          *  
* E.G. Slope (ft/ft)   * 0.024057 * Area (sq ft)  *          * 22.75 *          *  
* Q Total (cfs)        * 134.00 * Flow (cfs)      *          * 134.00 *          *  
* Top Width (ft)        * 21.65 * Top Width (ft)    *          * 21.65 *          *  
* Vel Total (ft/s)     * 5.89 * Avg. Vel. (ft/s)  *          * 5.89 *          *  
* Max Chl Dpth (ft)    * 2.09 * Hydr. Depth (ft) *          * 1.05 *          *  
* Conv. Total (cfs)    * 863.9 * Conv. (cfs)   *          * 863.9 *          *  
* Length Wtd. (ft)     * 566.77 * Wetted Per. (ft) *          * 22.00 *          *  
* Min Ch El (ft)       * 5373.86 * Shear (lb/sq ft) *          * 1.55 *          *  
* Alpha                * 1.00 * Stream Power (lb/ft s) *          * 9.15 *          *  
* Frctn Loss (ft)      * 8.23 * Cum Volume (acre-ft) *          * 0.52 *          *  
* C & E Loss (ft)       * 0.04 * Cum SA (acres)   *          * 0.35 *          *  
*****
```

Warning - The energy equation could not be balanced within the specified number of iterations. The program selected the water surface that had the least amount of error between computed and assumed values.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Warning - The parabolic search method failed to converge on critical depth. The program will try the

cross section slice/secant method to find critical depth.

Note - Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

CROSS SECTION OUTPUT Profile #10 YR.

```
*****  
W.S. Elev (ft) * 5375.40 * Element * Left OB * Channel * Right OB *  
Vel Head (ft) * 0.47 * Wt. n-Val. * * 0.040 * *  
* E.G. Elev (ft) * 5375.87 * Reach Len. (ft) * 874.56 * 566.77 * 260.56 *  
Crit W.S. (ft) * 5375.38 * Flow Area (sq ft) * * 20.01 * *  
E.G. Slope (ft/ft) * 0.023142 * Area (sq ft) * * 20.01 * *  
* Q Total (cfs) * 110.00 * Flow (cfs) * * 110.00 * *  
* Top Width (ft) * 20.53 * Top Width (ft) * * 20.53 * *  
Vel Total (ft/s) * 5.50 * Avg. Vel. (ft/s) * * 5.50 * *  
* Max Chl Dpth (ft) * 1.96 * Hydr. Depth (ft) * * 0.97 * *  
* Conv. Total (cfs) * 723.1 * Conv. (cfs) * * 723.1 * *  
Length Wtd. (ft) * 566.77 * Wetted Per. (ft) * * 20.85 * *  
Min Ch El (ft) * 5373.86 * Shear (lb/sq ft) * * 1.39 * *  
* Alpha * 1.00 * Stream Power (lb/ft s) * * 7.62 * *  
Frctn Loss (ft) * 8.38 * Cum Volume (acre-ft) * * 0.45 * *  
C & E Loss (ft) * 0.03 * Cum SA (acres) * * 0.33 * *  
*****
```

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION RIVER: RED CANON DRAW

REACH: MAIN STEM RS: 2

CROSS SECTION OUTPUT Profile #100 YR.

```
*****  
W.S. Elev (ft) * 5367.59 * Element * Left OB * Channel * Right OB *  
* Vel Head (ft) * 0.44 * Wt. n-Val. * * 0.040 * *  
E.G. Elev (ft) * 5368.03 * Reach Len. (ft) * 311.12 * 311.12 * 311.12 *  
Crit W.S. (ft) * 5367.07 * Flow Area (sq ft) * * 30.07 * *  
* E.G. Slope (ft/ft) * 0.009969 * Area (sq ft) * * 30.07 * *  
* Q Total (cfs) * 160.00 * Flow (cfs) * * 160.00 * *  
Top Width (ft) * 16.15 * Top Width (ft) * * 16.15 * *  
Vel Total (ft/s) * 5.32 * Avg. Vel. (ft/s) * * 5.32 * *  
* Max Chl Dpth (ft) * 3.79 * Hydr. Depth (ft) * * 1.86 * *  
Conv. Total (cfs) * 1602.5 * Conv. (cfs) * * 1602.5 * *  
Length Wtd. (ft) * 311.12 * Wetted Per. (ft) * * 17.51 * *  
Min Ch El (ft) * 5364.56 * Shear (lb/sq ft) * * 1.07 * *  
Alpha * 1.00 * Stream Power (lb/ft s) * * 5.69 * *  
Frctn Loss (ft) * 2.56 * Cum Volume (acre-ft) * * 0.23 * *  
C & E Loss (ft) * 0.03 * Cum SA (acres) * * 0.12 * *  
*****
```

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #50 YR.

```
*****  
W.S. Elev (ft) * 5367.37 * Element * Left OB * Channel * Right OB *  
Vel Head (ft) * 0.39 * Wt. n-Val. * * 0.040 * *  
E.G. Elev (ft) * 5367.76 * Reach Len. (ft) * 311.12 * 311.12 * 311.12 *  
Crit W.S. (ft) * 5366.86 * Flow Area (sq ft) * * 26.62 * *
```

```

* E.G. Slope (ft/ft) * 0.009709 * Area (sq ft) * * 26.62 *
* Q Total (cfs) * 134.00 * Flow (cfs) * * 134.00 *
* Top Width (ft) * 15.26 * Top Width (ft) * * 15.26 *
* Vel Total (ft/s) * 5.03 * Avg. Vel. (ft/s) * * 5.03 *
* Max Chl Dpth (ft) * 3.57 * Hydr. Depth (ft) * * 1.75 *
* Conv. Total (cfs) * 1359.9 * Conv. (cfs) * * 1359.9 *
* Length Wtd. (ft) * 311.12 * Wetted Per. (ft) * * 16.51 *
* Min Ch El (ft) * 5364.56 * Shear (lb/sq ft) * * 0.98 *
* Alpha * 1.00 * Stream Power (lb/ft s) * * 4.92 *
* Frctn Loss (ft) * 2.62 * Cum Volume (acre-ft) * * 0.20 *
* C & E Loss (ft) * 0.02 * Cum SA (acres) * * 0.11 *
*****

```

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #10 YR.

```

*****  

* W.S. Elev (ft) * 5367.09 * Element * Left OB * Channel * Right OB *  

* Vel Head (ft) * 0.37 * Wt. n-Val. * * 0.040 * *  

* E.G. Elev (ft) * 5367.46 * Reach Len. (ft) * 311.12 * 311.12 * 311.12 *  

* Crit W.S. (ft) * 5366.64 * Flow Area (sq ft) * * 22.53 * *  

* E.G. Slope (ft/ft) * 0.010270 * Area (sq ft) * * 22.53 * *  

* Q Total (cfs) * 110.00 * Flow (cfs) * * 110.00 * *  

* Top Width (ft) * 14.12 * Top Width (ft) * * 14.12 * *  

* Vel Total (ft/s) * 4.88 * Avg. Vel. (ft/s) * * 4.88 * *  

* Max Chl Dpth (ft) * 3.29 * Hydr. Depth (ft) * * 1.59 * *  

* Conv. Total (cfs) * 1085.4 * Conv. (cfs) * * 1085.4 * *  

* Length Wtd. (ft) * 311.12 * Wetted Per. (ft) * * 15.25 * *  

* Min Ch El (ft) * 5364.56 * Shear (lb/sq ft) * * 0.95 * *  

* Alpha * 1.00 * Stream Power (lb/ft s) * * 4.62 * *  

* Frctn Loss (ft) * 2.56 * Cum Volume (acre-ft) * * 0.17 * *  

* C & E Loss (ft) * 0.03 * Cum SA (acres) * * 0.11 * *  

*****

```

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION RIVER: RED CANON DRAW

REACH: MAIN STEM RS: 1

CROSS SECTION OUTPUT Profile #100 YR.

```

*****  

* W.S. Elev (ft) * 5365.10 * Element * Left OB * Channel * Right OB *  

* Vel Head (ft) * 0.33 * Wt. n-Val. * * 0.040 * *  

* E.G. Elev (ft) * 5365.43 * Reach Len. (ft) * * * *  

* Crit W.S. (ft) * 5364.35 * Flow Area (sq ft) * * 34.61 * *  

* E.G. Slope (ft/ft) * 0.006878 * Area (sq ft) * * 34.61 * *  

* Q Total (cfs) * 160.00 * Flow (cfs) * * 160.00 * *  

* Top Width (ft) * 17.37 * Top Width (ft) * * 17.37 * *  

* Vel Total (ft/s) * 4.62 * Avg. Vel. (ft/s) * * 4.62 * *  

* Max Chl Dpth (ft) * 3.10 * Hydr. Depth (ft) * * 1.99 * *  

* Conv. Total (cfs) * 1929.3 * Conv. (cfs) * * 1929.3 * *  

* Length Wtd. (ft) * * Wetted Per. (ft) * * 18.83 * *  

* Min Ch El (ft) * 5362.00 * Shear (lb/sq ft) * * 0.79 * *  

* Alpha * 1.00 * Stream Power (lb/ft s) * * 3.65 * *  

* Frctn Loss (ft) * * Cum Volume (acre-ft) * * * *  

* C & E Loss (ft) * * Cum SA (acres) * * * *  

*****

```

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

CROSS SECTION OUTPUT Profile #50 YR.

	*	W.S. Elev (ft)	*	5364.80	*	Element	*	Left OB	*	Channel	*	Right OB	*
*	Vel Head (ft)	*	0.32	*	Wt. n-Val.	*	*	*	0.040	*	*	*	*
*	E.G. Elev (ft)	*	5365.12	*	Reach Len. (ft)	*	*	*	*	*	*	*	*
Crit W.S. (ft)	*	5364.12	*	Flow Area (sq ft)	*	*	*	29.58	*	*	*	*	*
E.G. Slope (ft/ft)	*	0.007375	*	Area (sq ft)	*	*	*	29.58	*	*	*	*	*
* Q Total (cfs)	*	134.00	*	Flow (cfs)	*	*	*	134.00	*	*	*	*	*
Top Width (ft)	*	16.16	*	Top Width (ft)	*	*	*	16.16	*	*	*	*	*
Vel Total (ft/s)	*	4.53	*	Avg. Vel. (ft/s)	*	*	*	4.53	*	*	*	*	*
* Max Chl Dpth (ft)	*	2.80	*	Hydr. Depth (ft)	*	*	*	1.83	*	*	*	*	*
Conv. Total (cfs)	*	1560.4	*	Conv. (cfs)	*	*	*	1560.4	*	*	*	*	*
Length Wtd. (ft)	*	*	*	Wetted Per. (ft)	*	*	*	17.48	*	*	*	*	*
* Min Ch El (ft)	*	5362.00	*	Shear (lb/sq ft)	*	*	*	0.78	*	*	*	*	*
* Alpha	*	1.00	*	Stream Power (lb/ft s)	*	*	*	3.53	*	*	*	*	*
Frctn Loss (ft)	*	*	*	Cum Volume (acre-ft)	*	*	*	*	*	*	*	*	*
C & E Loss (ft)	*	*	*	Cum SA (acres)	*	*	*	*	*	*	*	*	*

OSS SECTION OUTPUT Profile #10 YR.

	*	W.S. Elev (ft)	*	5364.60	*	Element	*	Left OB	*	Channel	*	Right OB	*
Vel Head (ft)	*	0.27	*	Wt. n-Val.	*	*	*	0.040	*	*	*	*	*
E.G. Elev (ft)	*	5364.87	*	Reach Len. (ft)	*	*	*	*	*	*	*	*	*
* Crit W.S. (ft)	*	5363.90	*	Flow Area (sq ft)	*	*	*	26.43	*	*	*	*	*
E.G. Slope (ft/ft)	*	0.006734	*	Area (sq ft)	*	*	*	26.43	*	*	*	*	*
Q Total (cfs)	*	110.00	*	Flow (cfs)	*	*	*	110.00	*	*	*	*	*
* Top Width (ft)	*	15.34	*	Top Width (ft)	*	*	*	15.34	*	*	*	*	*
* Vel Total (ft/s)	*	4.16	*	Avg. Vel. (ft/s)	*	*	*	4.16	*	*	*	*	*
Max Chl Dpth (ft)	*	2.60	*	Hydr. Depth (ft)	*	*	*	1.72	*	*	*	*	*
Conv. Total (cfs)	*	1340.4	*	Conv. (cfs)	*	*	*	1340.4	*	*	*	*	*
* Length Wtd. (ft)	*	*	*	Wetted Per. (ft)	*	*	*	16.57	*	*	*	*	*
Min Ch El (ft)	*	5362.00	*	Shear (lb/sq ft)	*	*	*	0.67	*	*	*	*	*
Alpha	*	1.00	*	Stream Power (lb/ft s)	*	*	*	2.79	*	*	*	*	*
* Frctn Loss (ft)	*	*	*	Cum Volume (acre-ft)	*	*	*	*	*	*	*	*	*
C & E Loss (ft)	*	*	*	Cum SA (acres)	*	*	*	*	*	*	*	*	*

SUMMARY OF REACH LENGTHS

ver: RED CANON DRAW

	*	Reach	*	River Sta.	*	Left	*	Channel	*	Right	*
	*	AIN STEM	*	11	*	133.26*	123.73*	117.59*			
*	MAIN STEM	*	10.5	*	Culvert	*	*	*			
*	MAIN STEM	*	10	*	566.42*	566.82*	567.37*				
	AIN STEM	*	9	*	795.97*	776.33*	829.69*				
	AIN STEM	*	8	*	563.24*	284.34*	77.07*				
*	MAIN STEM	*	7	*	798.86*	805.52*	813.65*				
	AIN STEM	*	6	*	100.09*	99.55*	99.29*				
	AIN STEM	*	5.5	*	Culvert	*	*	*			
*	MAIN STEM	*	5	*	355.29*	348.49*	357.94*				
*	MAIN STEM	*	4.5	*	Culvert	*	*	*			

*MAIN STEM * 4 * 1046.61* 1200.51* 1414.44*
 *MAIN STEM * 3 * 874.56* 566.77* 260.56*
 *MAIN STEM * 2 * 311.12* 311.12* 311.12*
 *MAIN STEM * 1 * 0* 0* 0*

Profile Output Table - Standard Table 1

* Reach	* River Sta	* Q Total	*Min Ch El	*W.S. Elev	*Crit W.S.	*E.G. Elev	*E.G. Slope	* Vel Chnl	*Flow Area	*Top Width	*F
		(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
* MAIN STEM	* 11	* 926.00	* 5429.00	* 5437.47	* 5432.30	* 5437.48	* 0.000130	* 0.76	* 1321.75	* 668.67	*
* MAIN STEM	* 11	* 740.00	* 5429.00	* 5437.31	* 5431.85	* 5437.32	* 0.000105	* 0.66	* 1215.65	* 642.25	*
* MAIN STEM	* 11	* 408.00	* 5429.00	* 5435.97	* 5430.93	* 5435.99	* 0.000633	* 0.90	* 451.35	* 465.81	*
*	*	*	*	*	*	*	*	*	*	*	*
* MAIN STEM	* 10.5	* Culvert	*	*	*	*	*	*	*	*	*
*	*	*	*	*	*	*	*	*	*	*	*
* MAIN STEM	* 10	* 926.00	* 5424.60	* 5428.04	* 5428.04	* 5429.05	* 0.019457	* 8.04	* 115.24	* 58.92	*
* MAIN STEM	* 10	* 740.00	* 5424.60	* 5427.76	* 5427.76	* 5428.63	* 0.019287	* 7.47	* 99.02	* 56.09	*
* MAIN STEM	* 10	* 408.00	* 5424.60	* 5427.26	* 5427.10	* 5427.76	* 0.015142	* 5.65	* 72.21	* 51.97	*
*	*	*	*	*	*	*	*	*	*	*	*
* MAIN STEM	* 9	* 926.00	* 5415.00	* 5417.72	* 5417.04	* 5418.03	* 0.005750	* 4.48	* 206.83	* 102.44	*
* MAIN STEM	* 9	* 740.00	* 5415.00	* 5417.43	* 5416.82	* 5417.70	* 0.005931	* 4.16	* 177.86	* 100.75	*
* MAIN STEM	* 9	* 408.00	* 5415.00	* 5416.38	* 5416.38	* 5416.82	* 0.025339	* 5.33	* 76.51	* 89.10	*
*	*	*	*	*	*	*	*	*	*	*	*
* MAIN STEM	* 8	* 926.00	* 5404.00	* 5409.30	* 5409.30	* 5410.62	* 0.018129	* 9.21	* 100.55	* 38.34	*
* MAIN STEM	* 8	* 740.00	* 5404.00	* 5408.79	* 5408.79	* 5410.04	* 0.018839	* 8.99	* 82.32	* 33.41	*
* MAIN STEM	* 8	* 408.00	* 5404.00	* 5409.64	*	* 5409.84	* 0.002623	* 3.57	* 114.19	* 42.39	*
*	*	*	*	*	*	*	*	*	*	*	*
* MAIN STEM	* 7	* 926.00	* 5399.00	* 5407.87	* 5407.87	* 5407.87	* 0.000013	* 0.36	* 2596.68	* 580.88	*
* MAIN STEM	* 7	* 740.00	* 5399.00	* 5407.87	* 5407.87	* 5407.87	* 0.000008	* 0.28	* 2596.68	* 580.88	*
* MAIN STEM	* 7	* 408.00	* 5399.00	* 5407.33	* 5407.33	* 5408.16	* 0.020265	* 7.32	* 55.75	* 33.16	*
*	*	*	*	*	*	*	*	*	*	*	*
* MAIN STEM	* 6	* 160.00	* 5392.00	* 5403.17	* 5393.91	* 5403.17	* 0.000000	* 0.04	* 4058.93	* 547.49	*
* MAIN STEM	* 6	* 134.00	* 5392.00	* 5401.98	* 5393.78	* 5401.98	* 0.000000	* 0.04	* 3408.18	* 539.38	*
* MAIN STEM	* 6	* 110.00	* 5392.00	* 5399.46	* 5393.64	* 5399.46	* 0.000000	* 0.05	* 2074.85	* 519.14	*
*	*	*	*	*	*	*	*	*	*	*	*
* MAIN STEM	* 5.5	* Culvert	*	*	*	*	*	*	*	*	*
*	*	*	*	*	*	*	*	*	*	*	*
* MAIN STEM	* 5	* 160.00	* 5388.85	* 5396.45	* 5390.49	* 5396.46	* 0.000104	* 1.01	* 158.35	* 29.62	*
* MAIN STEM	* 5	* 134.00	* 5388.85	* 5394.51	* 5390.30	* 5394.54	* 0.000228	* 1.28	* 104.94	* 25.47	*
* MAIN STEM	* 5	* 110.00	* 5388.85	* 5393.02	* 5390.12	* 5393.06	* 0.000482	* 1.58	* 69.61	* 21.94	*
*	*	*	*	*	*	*	*	*	*	*	*
* MAIN STEM	* 4.5	* Culvert	*	*	*	*	*	*	*	*	*
*	*	*	*	*	*	*	*	*	*	*	*
* MAIN STEM	* 4	* 160.00	* 5387.35	* 5390.13	*	* 5390.51	* 0.007187	* 4.94	* 32.41	* 12.85	*
* MAIN STEM	* 4	* 134.00	* 5387.35	* 5389.87	*	* 5390.20	* 0.006915	* 4.61	* 29.06	* 12.62	*
* MAIN STEM	* 4	* 110.00	* 5387.35	* 5389.57	*	* 5389.86	* 0.007033	* 4.36	* 25.25	* 12.36	*
*	*	*	*	*	*	*	*	*	*	*	*
* MAIN STEM	* 3	* 160.00	* 5373.86	* 5375.69	* 5375.68	* 5376.26	* 0.022885	* 6.08	* 26.34	* 23.03	*
* MAIN STEM	* 3	* 134.00	* 5373.86	* 5375.53	* 5375.53	* 5376.07	* 0.024057	* 5.89	* 22.75	* 21.65	*
* MAIN STEM	* 3	* 110.00	* 5373.86	* 5375.40	* 5375.38	* 5375.87	* 0.023142	* 5.50	* 20.01	* 20.53	*
*	*	*	*	*	*	*	*	*	*	*	*
* MAIN STEM	* 2	* 160.00	* 5364.56	* 5367.59	* 5367.07	* 5368.03	* 0.009969	* 5.32	* 30.07	* 16.15	*
* MAIN STEM	* 2	* 134.00	* 5364.56	* 5367.37	* 5366.86	* 5367.76	* 0.009709	* 5.03	* 26.62	* 15.26	*
* MAIN STEM	* 2	* 110.00	* 5364.56	* 5367.09	* 5366.64	* 5367.46	* 0.010270	* 4.88	* 22.53	* 14.12	*
*	*	*	*	*	*	*	*	*	*	*	*
* MAIN STEM	* 1	* 160.00	* 5362.00	* 5365.10	* 5364.35	* 5365.43	* 0.006878	* 4.62	* 34.61	* 17.37	*
* MAIN STEM	* 1	* 134.00	* 5362.00	* 5364.80	* 5364.12	* 5365.12	* 0.007375	* 4.53	* 29.58	* 16.16	*
* MAIN STEM	* 1	* 110.00	* 5362.00	* 5364.60	* 5363.90	* 5364.87	* 0.006734	* 4.16	* 26.43	* 15.34	*

Profile Output Table - Culvert Only

* Reach	* River Sta	* E.G. US.	* W.S. US.	* E.G. IC	* E.G. OC	* Min Top Rd	* Culv Q	* Q Weir	* Delta WS	* Culv Vel In								
				(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft)	(ft/s)							
* MAIN STEM	* 10.5	HIGH ST - 6'	5437.48	*	5437.47	*	5437.20	*	5437.48	*	5436.55	*	292.92	*	416.51	*	9.43	*
* MAIN STEM	* 10.5	HIGH ST - 5'	5437.48	*	5437.47	*	5437.05	*	5437.49	*	5436.55	*	216.56	*	416.51	*	9.43	*
MAIN STEM	* 10.5	HIGH ST - 6'	5437.32	*	5437.31	*	5437.03	*	5437.32	*	5436.55	*	286.87	*	240.48	*	9.55	*
MAIN STEM	* 10.5	HIGH ST - 5'	5437.32	*	5437.31	*	5436.89	*	5437.32	*	5436.55	*	212.65	*	240.48	*	9.55	*
* MAIN STEM	* 10.5	HIGH ST - 6'	5435.99	*	5435.97	*	5435.52	*	5435.99	*	5436.55	*	228.76	*	*	*	8.71	*
MAIN STEM	* 10.5	HIGH ST - 5'	5435.99	*	5435.97	*	5435.60	*	5435.98	*	5436.55	*	179.24	*	*	*	8.71	*
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
* MAIN STEM	* 5.5	BASIN CLVRT.*	5403.17	*	5403.17	*	5403.17	*	5402.94	*	5402.74	*	144.02	*	15.98	*	6.73	*
MAIN STEM	* 5.5	BASIN CLVRT.*	5401.98	*	5401.98	*	5401.98	*	5400.13	*	5402.74	*	134.00	*	*	*	7.47	*
MAIN STEM	* 5.5	BASIN CLVRT.*	5399.46	*	5399.46	*	5399.46	*	5398.53	*	5402.74	*	110.00	*	*	*	6.44	*
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
* MAIN STEM	* 4.5	SOUTH STREET*	5396.46	*	5396.45	*	5396.46	*	5395.08	*	5397.57	*	160.00	*	*	*	6.31	*
MAIN STEM	* 4.5	SOUTH STREET*	5394.54	*	5394.51	*	5394.54	*	5393.95	*	5397.57	*	134.00	*	*	*	4.64	*
MAIN STEM	* 4.5	SOUTH STREET*	5393.06	*	5393.02	*	5393.06	*	5392.99	*	5397.57	*	110.00	*	*	*	3.45	*

ERRORS WARNINGS AND NOTES

Errors Warnings and Notes for Plan : AS BUILT

River: RED CANON DRAW Reach: MAIN STEM RS: 10.5 Profile: 1 Culv: HIGH ST - 6'

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

River: RED CANON DRAW Reach: MAIN STEM RS: 10.5 Profile: 1 Culv: HIGH ST - 5'

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

River: RED CANON DRAW Reach: MAIN STEM RS: 10.5 Profile: 2 Culv: HIGH ST - 6'

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

River: RED CANON DRAW Reach: MAIN STEM RS: 10.5 Profile: 2 Culv: HIGH ST - 5'

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

River: RED CANON DRAW Reach: MAIN STEM RS: 10.5 Profile: 3 Culv: HIGH ST - 6'

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

River: RED CANON DRAW Reach: MAIN STEM RS: 10.5 Profile: 3 Culv: HIGH ST - 5'

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

River: RED CANON DRAW Reach: MAIN STEM RS: 10 Profile: 1

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m) between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

River: RED CANON DRAW Reach: MAIN STEM RS: 10 Profile: 2

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical

depth for the water surface and continued on with the calculations.

Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

River: RED CANON DRAW Reach: MAIN STEM RS: 10 Profile: 3

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

River: RED CANON DRAW Reach: MAIN STEM RS: 9 Profile: 1

Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

River: RED CANON DRAW Reach: MAIN STEM RS: 9 Profile: 2

Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

River: RED CANON DRAW Reach: MAIN STEM RS: 9 Profile: 3

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

River: RED CANON DRAW Reach: MAIN STEM RS: 8 Profile: 1

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

River: RED CANON DRAW Reach: MAIN STEM RS: 8 Profile: 2

Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

- Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
- Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.
- Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

River: RED CANON DRAW Reach: MAIN STEM RS: 8 Profile: 3

- Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
- Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
- Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

River: RED CANON DRAW Reach: MAIN STEM RS: 7 Profile: 1

- Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
- Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
- Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.
- Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
- Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

Note - Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

River: RED CANON DRAW Reach: MAIN STEM RS: 7 Profile: 2

- Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
- Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
- Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.
- Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
- Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.
- Note - Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

River: RED CANON DRAW Reach: MAIN STEM RS: 7 Profile: 3

- Warning - The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
- Warning - The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
- Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
- Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.
- Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
- Note - Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

River: RED CANON DRAW Reach: MAIN STEM RS: 5.5 Profile: 1

- Warning - During subcritical analysis, while trying to calculate culvert and weir flow, the program could not get a balance of energy within the specified tolerance and number of trials. The program used the solution with the minimum error.

River: RED CANON DRAW Reach: MAIN STEM RS: 5.5 Profile: 1 Culv: BASIN CLVRT.

Note - Culvert critical depth exceeds the height of the culvert.

Note - During the supercritical calculations a hydraulic jump occurred inside of the culvert.

Note - The culvert inlet is submerged and the culvert flows full over part or all of its length. Therefore, the culvert inlet equations are not valid and the supercritical result has been discarded. The outlet answer will be used.

River: RED CANON DRAW Reach: MAIN STEM RS: 5.5 Profile: 2 Culv: BASIN CLVRT.

Warning - Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.

Note - Culvert critical depth exceeds the height of the culvert.

Note - The flow in the culvert is entirely supercritical.

River: RED CANON DRAW Reach: MAIN STEM RS: 5.5 Profile: 3 Culv: BASIN CLVRT.

Warning - Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.

Note - The flow in the culvert is entirely supercritical.

River: RED CANON DRAW Reach: MAIN STEM RS: 4.5 Profile: 1 Culv: SOUTH STREET

Warning - Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.

Note - The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.

Note - The flow in the culvert is entirely supercritical.

River: RED CANON DRAW Reach: MAIN STEM RS: 4.5 Profile: 2 Culv: SOUTH STREET

Warning - Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.

Note - The flow in the culvert is entirely supercritical.

River: RED CANON DRAW Reach: MAIN STEM RS: 4.5 Profile: 3 Culv: SOUTH STREET

Warning - Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.

Note - The flow in the culvert is entirely supercritical.

River: RED CANON DRAW Reach: MAIN STEM RS: 4 Profile: 1

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

River: RED CANON DRAW Reach: MAIN STEM RS: 4 Profile: 2

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

River: RED CANON DRAW Reach: MAIN STEM RS: 4 Profile: 3

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

River: RED CANON DRAW Reach: MAIN STEM RS: 3 Profile: 1

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

Note - Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

River: RED CANON DRAW Reach: MAIN STEM RS: 3 Profile: 2

Warning - The energy equation could not be balanced within the specified number of iterations. The program selected the water surface that had the least amount of error between computed and assumed values.

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning - During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

Note - Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

River: RED CANON DRAW Reach: MAIN STEM RS: 3 Profile: 3

Warning - The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

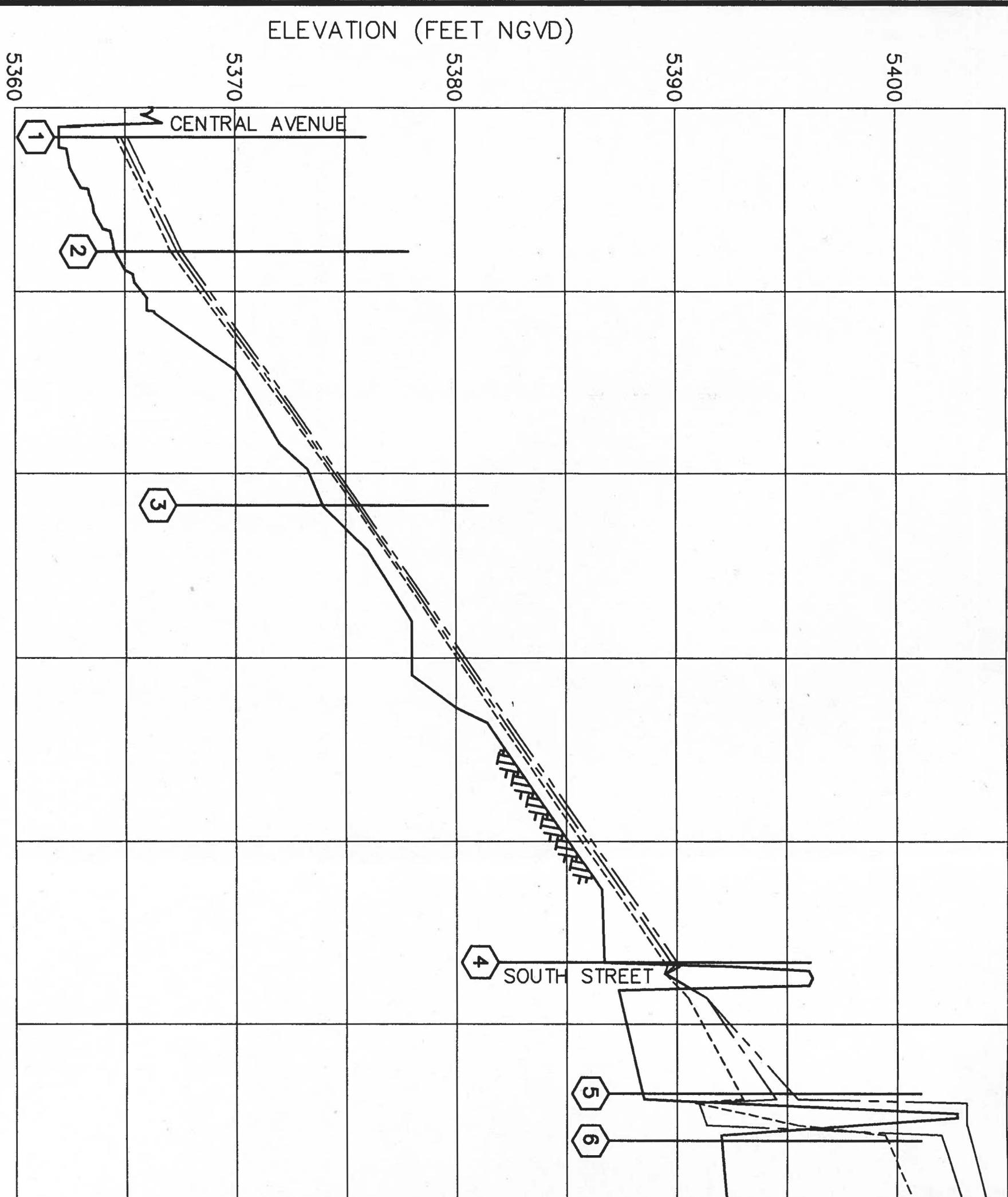
River: RED CANON DRAW Reach: MAIN STEM RS: 2 Profile: 1

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

River: RED CANON DRAW Reach: MAIN STEM RS: 2 Profile: 2

Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

River: RED CANON DRAW Reach: MAIN STEM RS: 2 Profile: 3


Warning - The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

River: RED CANON DRAW Reach: MAIN STEM RS: 1 Profile: 1

Warning - The parabolic search method failed to converge on critical depth. The program will try the cross section slice/secant method to find critical depth.

SECTION 5

As Built Profiles

LEGEND

CROSS SECTION LOCATION

A chemical structure diagram showing a cyclohexane ring with a methyl group (a single horizontal line) attached to one of the ring carbons.

The logo for ADP, featuring the letters 'ADP' in a bold, black, sans-serif font. The letter 'A' is enclosed within a square frame that has a decorative, stylized 'X' or 'diamond' pattern inside it.

PREPARED BY

DATE: 3/30/98 DESIGNED BY JJW
JOB NO. 970806 PROJECT ENGINEER
CAD FILE NO. ORCH_PR1.DWG PROJECT MANAGER
DRAWN BY MAB HORIZ. 300'
DRAWN BY

**NE CANON DRAINAGE AREA
SUB-BASIN FROM NE
CITY OF CANON CITY, COLORADO
FLOOD PROFILES**

ELEVATION (FEET NGVD)

5440

5430

5420

5410

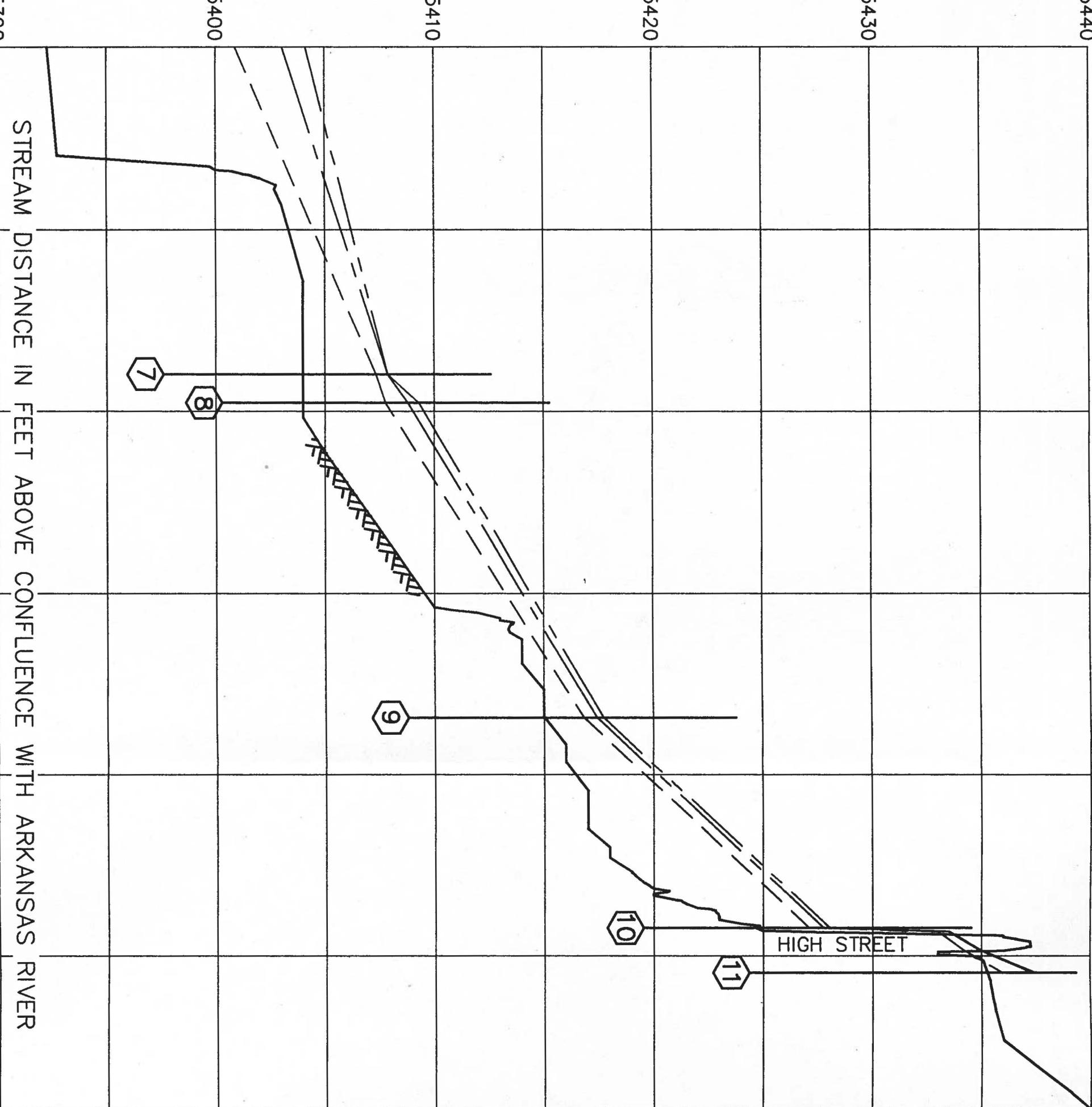
5400

5390

11,000

11,500

12,000


12,500

13,000

13,500

13,900

STREAM DISTANCE IN FEET ABOVE CONFLUENCE WITH ARKANSAS RIVER

LIMIT OF DETAILED STUDY

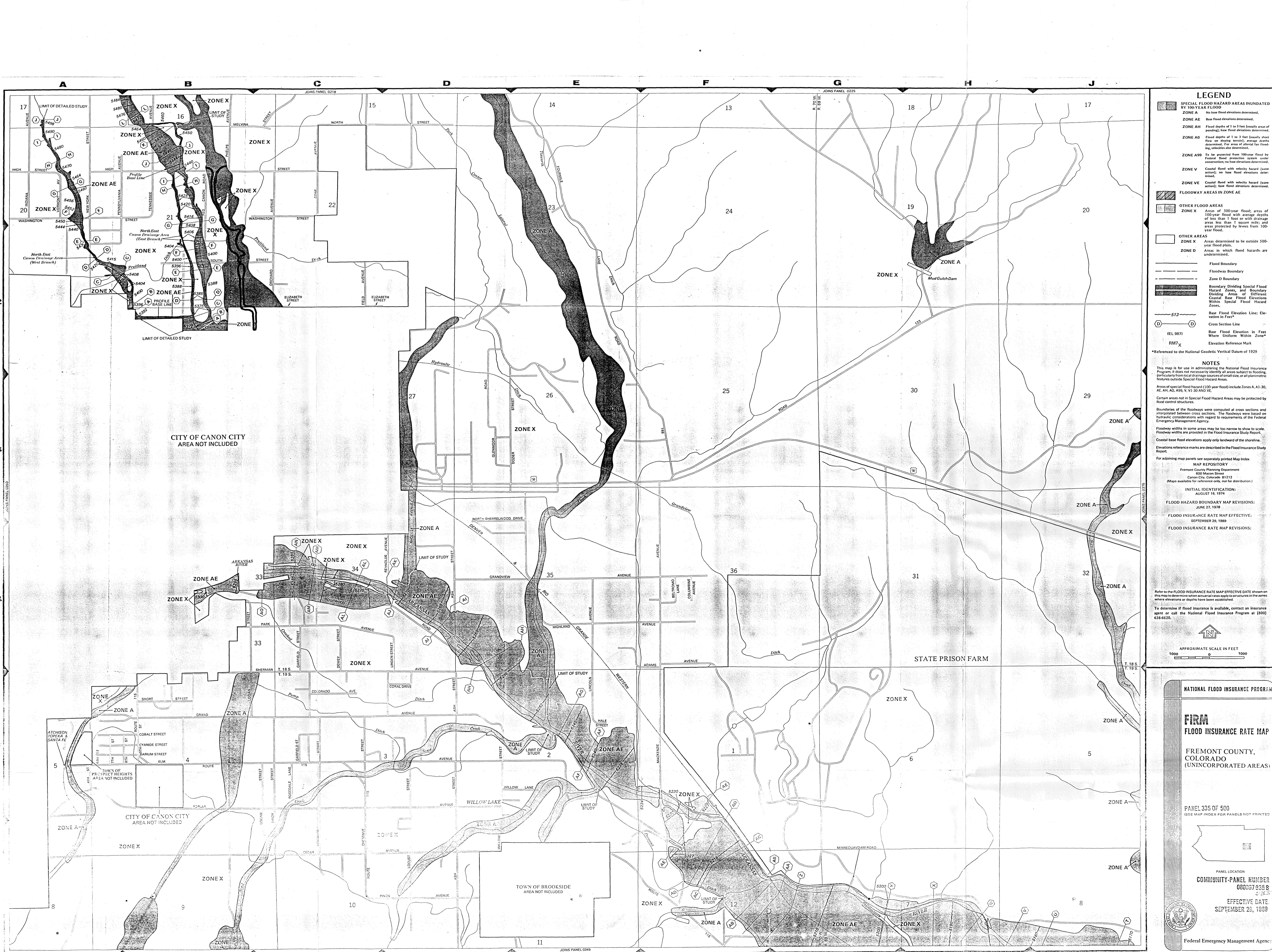
100 YEAR FLOOD
50 YEAR FLOOD
10 YEAR FLOOD
STREAM BED

CROSS SECTION LOCATION

LEGEND

NE CANON DRAINAGE AREA
SUB-BASIN FROM NE
CITY OF CANON CITY, COLORADO
FLOOD PROFILE

NO.	DATE	REVISION	BY


1991 Mutual Water Purchasing
Colorado River & Co. Corp.
Box 1707, P.O. Box 1707
Fort Collins, CO 80524

ADP

PREPARED BY:

DATE: 3/30/98
JOB NO. 970806
CAD FILE NO. ORCH_PR2.DWG
DRAWN BY J.W.
DESIGNED BY J.W.
PROJECT ENGINEER MAB
MAB
PROJECT MANAGER MAB
HORZ. 300'
VFRT 5'

